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In the present work, | deal with the task of determining al finite groups
of fractiond linear substitutions that are isomorphic? to the symmetric or
dternating group of n numbers in the first degree. This task is carried out
insofar as an exact outline of the desired collineation groups is gained. In the
following, | call the symmetric group of n numbers §,, the aternating group A,

It is sufficient to know the irreducible collineation groups; moreover,
one has to consider two equivalent® groups, i.e., two groups which can be
transformed into each other, as not being distinct.

Among the groups of fractional linear substitutions that are isomorphic
[homomorphic; Trandator] to S, or A, those play a specia role which can
bewritten asgroupsof n! and n!/2 complete homogeneouslinear substitutions.

1The present text is a tranglation of Schur, |. (1911). Uber die Darstellung der symmetrischen
und der alternierenden Gruppen durch gebrochene lineare substitutionen, Journal fur diereine
und angewandte Mathematik, 139, 155-250. Trandated by Marc-Felix Otto. Published with
the permission of Journal fur die reine und angewandte Mathematik.

2In some places, but not all, “isomorphic” must be read as “homomorphic.” Trandator.

3That is, isomorphic. Trang ator.
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All these groups have already been determined by Mr. Frobenius* by calculat-
ing the characters of the groups S, and A,..% | will show a simple method for
the construction of these groups.®

Hence, we only have to deal with those groups in which the use of
fractional linear substitutions is essential. | designate such a group as S,\©@
or A,©@, depending on whether it is isomorphic [homomorphic; Trandator]
to S, or A,; correspondingly, | designate groups isomorphic [homomorphic;
Trandator] to S, and A, in which the fractional linear substitutions can be
replaced by homogeneous linear substitutions as S and A,™.

If n < 4, there exist no groups S @ and A, @ at dl. But if n = 4, the
number of distinct (nonequivalent) irreducible groups S@ equal's the number
Vv, of decompositions

N=vy+v,+ ...+ v, wi>v>...>v,>0) D

of ninto different integer summands, namely a decomposition (1) corresponds
to an irreducible group S, of the order
n! Vo — VB

f = pln-m2

vL2envm va|vo| - vl o Ve T Vg
as | will show in the following.

Here | designate as the order of agroup of fractional linear substitutions
the number of variables reduced by 1, i.e., the number of variables in the
corresponding homogeneous linear substitutions. For the decomposition n =
n, one has f, = 2"V, If n = 6, the two groups of order f; = 4 and f3,; =
4 are to be considered not distinct from each other.

Mr. A. Wiman has already indicated the very interesting group of order
2[n=Y21 in his important work, Ueber die Darstellung der symmetrischen und
aternirenden Vertauschungsgruppen al's Collineati onsgruppen von moeglichst
geringer Dimensionszahl,” though without specifying how this group can be
composed for an arbitrary n. In Part VI, | specify a relatively easy method
for the construction of this goup.

Regarding the alternating group, one has to consider the following: The
group A, has an External automorphism A = (B), where P’ follows from P
by apermutation of certain numbersin the cycles of the permutation P, e.g., of

4Ueber die Charaktere der symmetrischen Gruppe, Stzungsber. K. Preuss. Akad. Berlin (1900),
p. 516; Ueber die Charaktere der aternierenden Gruppe, ibid. (1903), p. 328. | have obtained
the characters of the symmetric group in another way in my dissertation, Ueber eine Klasse
von Matrizen, die sich einer gegebenen Matrix zuordnen lassen (Berlin, 1901).

SParagraph 42 of this work shows an abstract of Frobenius' results.

SUeber die Darstellung der symmetrischen Gruppe durch lineare homogene Substitutionen,
Sitzungsber. K. Preuss. Akad. Berlin (1908), p. 664.

"Math. Annalen 52, 243.
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the numbers 1 and 2. Hence one gains from every isomorphic [homomorphic;
Tranglator] collineation group K a second group K’ of the same kind by
substituting for the collineation of K which belongs to P the one that belongs
to P’ for any P. In the following, | call K and K’ adjunct groups.

If one considers two adjunct groups as not different even if they are not
equivalent to each other, then the number of different irreducible groups A,©@
for n = 4 becomes 1 and for n > 4, as for the symmetric group, v,. The
irreducible group A9 corresponding to the decomposition (1) equals
foiva . vo if N — misodd and £f,, ,, .. if N — mis even. However, those
general rules undergo an exception in the two cases wheren = 6 and n =
7. For n = 6, among the Vs = 4 mentioned groups A¢®, whose orders equal
4, 4, 8, 20, one has to consider the two groups of order 4, as in the group
Ss, to be identical; though apart from the remaining three groups, there are
six other essentially different® irreducible groups A¢@ of the orders 3, 6, 6,
9, 12, 15. For n = 7, there are added to the v; = 5 groups A/ corresponding
to the genera case 11 other irreducible groups of the orders 6, 6, 15, 15, 21,
21, 24, 24, 24, 24, 36.

Every group S,@ and A9 can be written as a group of 2n! and 2n!/2
homogeneous linear substitutions, respectively. This rule only fails with the
aternating groups As and A;; here the minima number of homogeneous
linear substitutions by which a group A,©@ (n = 6, 7) can be written can also
be 3n!/2 or 6n!/2. This explains the exceptional status of the groups A9
and A9,

Of special interest is the existence of two essentially different groups
A/9 of the order 6 to which is added a group A/9 of the same order. The
two groups A9 can be distinguished in the first place in that the one can
be written as a group of 3(7!/2) homogeneous linear substitutions, the other
as a group of 6(7!/2). Both these groups have been overlooked by Mr.
Wiman,® in the examination of the collineation groups of order 6 isomorphic
[homomorphic; Trandlator] with A;.

Until now, of the groups S@ and A, named above, only the binary,
ternary, and quaternary groups have been known, except the group S,@ of
the order 2I"~¥2 and the corresponding group A9 of the order 2i"~22
mentioned in the work by Mr. Wiman. The binary groups A9, S, and
A9 arefirst found in a geometrical outfit in the work by Mr. H. A. Schwarz,
Ueber digieniger Faelle, in welchen die Gaussische hypergeometrische Reihe
eine algebraische Funktion ihres vierten Elementes darstellt.° Independently,
Mr. F. Klein formed these three groups in his work, Ueber binaere Fomen

8Two groups with conjugated complex coefficients are considered not distinct. J. Mathematik
139, 2.

°lbid., pp. 259 ff.

10J. Reine Angew. Math. 75, 292.
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mit linearen Transformationen in sich selbst,'* and also proved that these are
the only finite binary substitution groups, disregarding two trivial cases. The
existence of aternary group A¢® was first shown by Mr. Wiman'? by proving
that a ternary collineation group already mentioned by Mr. Vaentiner’® is
isomorphic [homomorphic Trandator] to the group As. Among the (irreduc-
ible) quaternary collineation groups, there is one of each group S,9, S9,
A9, A9 and two of the groups S©@ and As®. The groups S©@ and A/@
were first discovered by Mr. F. Klein** by considerations of linear geometry;
each of these groups contains the group A¢® and one of the groups S©@
and As©® as subgroups. The enumeration of all the ternary and quaternary
collineation groups which are ismorphic to a symmetric or alternating group
has been done by Mr. H. Maschke.'®

In the following, | use the methods that | explained in my work, Ueber
die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutio-
nen.'® To get an exact survey of al the groups S,@ and A, @, one only has
to establish the representation groups of S, and A, and cal culate the Frobenius
characters of these groups.

If n > 4, the group S, possesses two representation groups T, and Ty,
of the same order 2n! that are only isomorphic [homomorphic; Translator]
to each other for n = 6. Each of these groups has an invariant subgroup M
of the order 2 which is contained in the commutator of the groups, and the
groups T,,/M and T,/M are singly” isomorphic to the group S; T,, and T},
differ from each other in that the transpositions of S, in T,, correspond to
elements of the order 4, while those in T, correspond to elements of the
order 2. Both groups can easily be derived from each other; | will only deal
with the group T,.

The representation group of A, is clearly distinguished. If n = 4, but
not 6 or 7, then thisis a group B, of the order 2(n!/2) which is contained as
a subgroup in each of the groups T,, and T/. In contrast, the representation
groups of Ag and A; are of the order 6(6!/2) and 6(7!/2).

The determination of the representation groups of S, and A, isrelatively
easy if one uses a theorem on the definition of S, and A, as abstract finite
groups by Mr. E. H. Moore, which plays an important role in the mentioned

Math. Annalen 9, 183.

2Math. Annalen 47, 531.

BVidensk. Sals. Skrifter, 6. Raekke (Copenhagen, 1889), p. 64.

1 Math. Annalen 28, 499.

15Math. Annalen 51, 251.

16]. Reine Angew. Math. 127, 20. Also compare to my work, Untersuchungen ueber die
Darstellung der endlichen Gruppen durch gebrochene linear Substitutionen, Ibid., 132, 85.
In the following, | cite the first work by D., the second one by U.

7In the original, em einstufig. Trandator.
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works by Mr. Wiman and H. Maschke, t00.18 The calculation of the characters
of these representation groups is much harder; this required an intense study
of the group T,, which on the one hand is closely related to the symmetric
group, but on the other hand has a much more complicated structure. Finally,
| can solve this problem by introducing a class of symmetric functions that
are interesting themselves (Chapter 1X).

1. THE REPRESENTATION GROUPS OF THE GROUPS §,
AND A,

Paragraph 1. To facilitate the understanding of the following, | start
with some remarks on the notions which | use.'®

Let H be afinite group of the order h. If one assigns to the elements
A B, ... of H the h linear substitutions (collineations) of nonvanishing
determinants

X = apu,lyl + o+ apu,mflymfl + au,m
Yoamyi o + Anme1Yme1 T 8mm
— bu,lyl + o+ bp,,m—lym—l + bu,m
bm,lyl + o+ bm,m—lym—l + bm,m

then these substitutions form a representation (of the order m) of H if the
product AB eguals the substitution AB, which corresponds to the product AB
of the elements A and B, with each two elements A, B of the group. Here,
the h substitutions A, B, ... do not need to differ from each other. If one
denotes the coefficient matrices (a,,), (by,), ... with (A), (B), ..., then
the eguation

(A)(B) = ras(AB) (2)

holdswith each two elements A, B of thegroup, wherer 5 g isacertain constant.
In the reverse case, a representation of H of fractional linear substitutions
corresponds to each system of h matrices (A), (B),. . . , whose determinants
are not zero and which have the property that with each two elements A, B
of H there exists an equation of the form (2).

Each matrix (A), (B), ... which corresponds to the substitutions A, B,
... isonly determined up to a constant. If these factors can be chosen such
that the numbersr, g &l become equal to one, then the matrices (A), (B), . . .

183Mr. de Seguier, Co. R. Acad. Scie. Paris (1910), 150, 599 has determined the representation
groups of S, and A, in another way. However, in the alternating group, Mr. de Seguier missed
the important exception n = 7.

1%Compare D., Introduction.
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themselves form a representation of the group H which can also beinterpreted
as a representation of H by the even homogeneous linear substitutions

(A) X, =auyr T a,y, + - + amYm
(B) XM = bpulyl + bu2y2 t o+ bp.mym

Two representations of agroup by whole or fractional linear substitutions
are equivaent if one representation can be transformed into the other by a
whole or fractional linear transformation of the variables of a nonvanishing
determinant. Moreover, a representation of mth order by whole or fractional
linear substitutionsiscalledirreducibleif for none of itsequivalent representa-
tions there can be found a number k < m such that among the coefficients
a0y, - - . Of its substitutions, those become equal to zero at which A = k
and p > kor N > kand p = k

A finite group K which contains a subgroup M consisting of invariant
elements of K such that the group K/M is isomorphic to the group H in the
first degree will be denoted as a group of H completed by the group M. If
K=MA"+ MB' + ..., theelement A of H shall correspond to the complex
MA', the element B to the complex B', etc. Furthermore, one has an arbitrary
representation A’ of the group K by homogeneous linear substitutions (matri-
ces) such that to each element of the subgroup M there corresponds a matrix
which only differs by a constant factor from the identity matrix.?° If in this
representation the matrices (A), (B), . . . are assigned to the elements A’, B/,
..., then there exist equations of the form (2) for these matrices. Hence to
each such representation A’ of K by homogeneous linear substitutions there
belongs a representation A of the group H by fractional linear substitutions.

The group K can always be chosen such that by this each representation
of H can be established by fractional linear substitutions. A group K which
has this property will be called a sufficiently completed group of H. If the
order of such a group becomes the smallest possible, then | denote it as a
representation group of H. Hence, if one knows a representation group K of
H, one can get al the irreducible representations of K by fractiona linear
substitutionsby determining all theirreducible representations of K by homog-
enous linear substitutions.

A sufficiently completed group K of H is arepresentation group exactly
if the commutator of K contains all the elements of the subgroup M. Moreover,
the commutator of each representation group, being an abstract group, is
readily determined by the group H. The same is valid for the subgroup M,
which | denote as the multiplicator of the group H. A group H whose
multiplicator is of order one will be called a closed group.

(k=12 ..., m

2This condition is automatically satisfied with an irreducible representation.
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Paragraph 2. The symmetric group S, can be generated by the n —
1 transpositions

S=@2, $=@3,...., S.i1=(M-1n)
These transpositions satisfy the equations
% = E’ (%Sg*l) = E1 S\/% = %Sy (I)

and we have the following theorem as shown by Mr. E. H. Moore?:

If one considers equations (1) as a system of defining relations between
then — 1 generating elements S, S,, . . . S,_4, then the abstract group defined
thereby is finite and isomorphic to the group S, in the first degree.

Let us now consider any representation of the group S, by collineations.
A collineation with the coefficient matrix A, will correspond to the transposi-
tion S,; then A, is only determined up to a constant factor. From the relations
(1) there follow equations for A, of the form

Az =a,E (€)
(AsAR-1) = bgE 4
AyAS = VSASA'y (5)

where E istheidentity matrix and a,, bg, and c,; are certain nonzero constants.
The numbers c,; only appear for n > 3 and stay unchanged if the matrices
A, are multiplied with arbitrary constants and are therefore determined by
the considered collineations alone.

It follows from (5) that

AAA -1 = CpAs
Squaring on both sides yields, with (3),
Cg,a =1 (6)

Now, inS, = (y,y+ 1,5 =(,8 + 1) thefiguresy,y + 1,5,8 + 1
differ because d’ = v’ + 2. For two more indicesy’ and 8’ and 8’ = v' +
2, one can specify a permutation in S, which transports the indices y, v +
1,%,8 + 1totheindicesy’, v + 1,38’,8 + 1. Then,

Si§s=5, SIi§S=S

Correspondingly, if there is assigned a collineation with a coefficient matrix
A to the permutation S, in our representation,

2Proc. Lond. Math. Soc. (1897), 28, 357.
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ATAA=CA,, AIAA=dA
where ¢ and d are certain nonzero constants. Equation (5) now yields
ATIA AATIAA = c ATIAAATIA A
and
cd - A Ay = cdcsAyA, = cdc, s AvA,
Hence, c,; = C,s, i.€., al the numbers c,; are the same. If we put
Cy =]
then, with (6),
j=+1 (M
Moreover, from equations (4)
AgAsriAg = DATT A AT
Squaring yields readily
bf = afag .1 8)

As we may now multiply the matrices A, with arbitrary constants, we can
fix the numbers a, arbitrarily. First put

y=a=...=81=]

Then, from (7) and (8), by = *1, and if the matrices By, By, ... B, ; are
defined by the equations

B, = A, B, = jbiA,, Bs = bib, A, B, = jbibobsA,, ...
they satisfy the relations
B: =JE,  (BgBs:i1)®=]JE,  B,B; =jB:B,
On the other hand, if one puts

al=a2=...=an+1=1
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and
CL=A, C, = biA,, Cs = biby A, C, = bibobsA,, . ..
then it follows that
C2 =E, (CeCs-1)® = JE, C,GCs = jGC,

Now, if j = 1, the relations (1) are satisfied if one substitutes B, = C, for
S.. Moore's theorem yields that for j = 1, the fractional linear substitutions
can be replaced by homogenous linear substitutions in our representation.
However, thisis certainly not the caseif j = —1. For n < 4, the latter option
is not to be considered at all.

Paragraph 3. Now it is easy to determine the representation groups on
S.. We denote with T, the finite abstract group which is determined by the
system of the defining relations

J2 =E, T2 =7, (TeTe)* = J, T,Ts = JTT, (m

of the generating elements J, Ty, T, ... To—1. In the same way, T, is the
group defined by the relations

P=E T2=J,  (TiTh)? =13
T/Ty=JT4T,  JT,=T.J

(1)

of the generating elements J, T4, T, ..., T;. J is contained as invariant
element in both groups T,, and T/, and if one introduces the group

M=E+J

the groups T,,/M and T,/M become isomorphic [homomorphic; Translator]
in the first degree to the group S,, which can be obtained by comparing
formulas (117) and (11") with (1). The groups T, and T/, thus appear as two
groups of S, completed by the group M. Next, the equations (I1) are satisfied
if one substitutes for the element J the matrix jE and for the elements T, the
matrices B,; also the equations (I1") are satisfied if one substitutes for the
elements J and T/, the matrices jE and C,. Hence, each representation of the
group S, by fractional linear substitutions yields as well a representation of
the group T, as a representation of the group T, by GANZE linear substitu-
tions. It follows that T, and T}, are to be denoted as sufficiently completed
groups of S,. As the element J is contained in the commutator on T,, and
T, for n = 4,
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J=TTTiiTsY, 3= TyT4Ti Tyt

the groups T, and T}, are representation groups for n = 4; the multiplicator
of the group S, is of the order 2 if n = 4.2

One has to consider that the commutator of S, is the alternating group
A.. As the index of this subgroup equals 2, i.e. (if n = 4), equals the order
of the multiplicator of S,, it follows that the group S, can have maximally
two representation groups not isomorphic [homomorphic; Translator] to each
other. However, if one uses this procedure in the general case of a finite
group, e.g., to get a second representation group of S, from T,, one is
automatically led to the group T/. Then, if n = 6, S, is a complete group,?
hence the groups T,, and T}, are not isomorphic [homomorphic, Translator]
to each other for n = 6.2* These two groups differ from each other in that
the elements of T, corresponding to the tranpositions of S, are of the order
4, while those of T, are of the order 2. This aso implies that Tg and Tg are
isomorphic [homomorphic, Translator] groups. This is because the group S,
has an outer automorphism which assigns to each transposition a permutation
of the form (ab)(gd)(eh). In Tg, the elements corresponding to these permuta-
tions are of the order 2, which can be seen from the elements T,T5Ts and
JT,T5Ts belonging to the permutation (12) (34) (56).%°

We can formulate the following theorem:

I. The groups S, and S; are compact groups. However, if n > 3, the
group S, possesses two representation groups T,, and T}, each of the order
2(n!), which can be defined as abstract groups by the relations (11) and (11")
and T, and T}, are isomorphic groups only if n = 6.

Paragraph 4. Now | consider the aternating group A,. This group is
generated by the n — 2 permutations

AL=55=(123), A=55=(12@34),...,
Az = §15 = (12)(n—1,n)

which satisfy the equations

22|t should also be proved that j = E cannot follow from the relation (I1) or (11"). This follows
from the fact that these relations can be satisfied by matrices such that E and J are replaced
by two different matrices, as we will see in Chapter 1V.

2 Compare to O. Hoelder, Bildung zusammengesetzter Gruppen, Math. Ann. 46, 321.

2 Compare to U., p. 122.

2]t can be seen directly that Tg and T are isomorphic by showing that the elements T, =
TiTaTe, T, = TEToTiTATaToTaTATS, Ta = TiTATaT5Ta, Ty = TiT5TiT4T5T TS, Ts =
TiT5TATaTeT 4T3 of T'g satisfy the relations defining Te.
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(1)

Again, thegroup A, isclearly defined asan abstract group by theserel ations.?
Let there be given an arbitrary representation of A, by collineations. If a
collineation with the coefficient matrix P, corresponds to a permutation A,,
then P, is only determined up to a constant factor and with (I11) there exist
equations of the form

P = aE, (P1P)® = by E, (P:P)) = ¢\E 9)
P2 = a,E, (PgPg+1)® = bgE, P\Ps = C\sPsP (10)

Equations (10) are completely analogous to equations (3)—(5) of Paragraph
2. We conclude like above, that

Cyp = Cop = £1, bf = adad1 (11)
Moreover, from (9),
(PP?)? = (aaP, P17 1)° = &%’ 'E
and
PiP,P; = byP, PPyt = bja, 1P, 1P 1P,
The last equation yields, raised to the third power,
P1P,PIP,PIPP; = Py(P,P3)°P1* = biaz %P2 'P1'Py)°

Hence,
adajbrt = blaySar?, i.e, bf=ala
Putting
bi
—— 12
o (12)

thenj = =1. From (P;P,)? = c,E, one also gets
P\PiP\ = &Py *P,P, = c\P1*

and, raising to the third power,

%E, H. Moore, op cit. The group A, can be defined more elegantly by the relations
C: =E, (CC)?’=E (0,B=12...n—-2B>a)

which can be show using Moore’ stheorem. But thisdefinition of A, isnot so useful inthiscase.
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aa =cart ie, C = aad (13)
For n = 6 and
asCy
Czy
(13) yields
ks=j=+1

Moreover, from the equations
(P1P2)? = c4E, PP, = C3P4P;
one readily obtains the equation
P,P1P, = c,ciP1 PP,

or

P4PP.Pt = cha,85 'c3Pr 1Pt
This implies, by raising both sides to the third power,

b, = ciadas 3cibit

Considering equations (11)—(13) one concludes that c,, = j; therefore,
generally,

Cs = J
For n = 7, also consider the equations
(PP)?=c, PP, =jPP; (n=5)
These yield
PsPiP, = cPr'P3'P, = jePr P, P3t

PsPiP,P3t = jcaa,a3 PP, !
Raising both sides to the second power, one obtains

— 202 A4—2~—1
c, = cdaZaz’c,

oy’ = chas?

On the other hand, it follows from (13) that
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cia,® = cjag®
and hence
Co_C_G_ G
a a 8 &
Also, if n > 7,
CG_C_Cr_ G
a4 4 o an—2
Therefore, if n > 7,
Cs _ G _ G _ _ Cn-2
ag a a 8,
In particular, if n > 7,
k=j==*1

One sees easily that the hereby introduced quantities j and k, which are
connected by the equation ks = j, stay unchanged if the matrices Py, Po, . . .
P,_, are multiplied with arbitrary constants; they are determined only by the
collineations to be considered. The quantity k appears only for n > 5 and
equals j for n > 7. Hence, only for n + 6 and n + 7 has k an essentia
meaning. Later, we will see that there are representations of the groups Ag
and A; at which k becomes a primitive sixth root of the identity.
In order to get easier formulas, we put for n = 4

i . &
le\?’/apb szlé_lzpz

Then,
Qi =IE (QQ)° = JE (14)
For n > 4, we put
== Py _ % _1b
Q=] vy Py; Q=] b, Py; Qs 2B aPs, ...
and, generally,
. b2b4 b2v—2 1 b1b3 b2v—1
v = _—ava v :_—av Pv
Q2 b1 b3b5 b2v—1 2012 Q2 +1 a b2b4 b2v 2v+1F 2v+1

A simple calculation yields for n = 5
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Q= Q%= Q5= (QQ)° = (QuQy)* = (QQy)° = |E (15)
forn=06
Q= =Q5= Qh = (QQ)® = (AQ)? (16)
= (QQq)° = (QsQu)* = JE(Q1Q4)* = KE; Q2Qs = jQ4Q2
forn=7
Ql = Q% = (QQ)® = (QiQs)?
= (QiQs)” = (QeQs+1)° = JE(QiQq)* = KE
Q«,Qa = jQBQ«/
a=2345 B=234 Yy=23 d=vy+2 (17)
and forn>7
i =JE (QQ)° = JE (QQ)* = JE
Qi = IE (QeQs+1)® = JE
Q)Qs = JQQ, (18)

The indices «, B, vy, 3, N in equations (18) fulfill the same conditions as in
equations (l11).

Paragraph 5. Now, we can easily determine the representation group
of A,.?” Consider the representation group T, of S,. The (MEHRSTUFIG)
isomorphism between S, and T,, corresponds to the subgroup A, of the order
n!/2 of S,, a subgroup B, of the order 2n!/2 of T,. This group B, can be
generated by the elements

B, =TTy, B, = T3Ty, By = T4Ty, ..., Bhzo=Th1Ty

and from the relations (I1), it immediately follows that these elements satisfy
equations analogous to equations (l11):

Bi=J (BB)=J  (BB)=J Bi=1J (V)
(BsBs.1)® =J;  B,B; = JBsB,

These equations also clearly define the group B, as an abstract group. It
readily follows from (1V) that J commutes with the elements B, B,, . . . B>
and has the order 2.

Z'Theorem |1 of my work U. yields that the group A,, which is a simple group if n < 4, only
has one representation group.
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The group B, is a group of A, completed by the group M = E + J and
it can be easily seen that the commutator of B, contains the element J if n =
4.28 |f nis greater than 3, but not 6 or 7, the formulas (14), (15), and (18)
indicate that equations (1V) are satisfied if one substitutes for the elements
J and B, the matrices jJE and Q,. From this it follows that, similarly as in
Paragraph 3 with the group S, the group B, is the representation group of
Arifn=4andn=6o0r7.

However, egquations (16) and (17) imply that the representation groups
of Ag and A; are certain groups of orders 6(6!/2) and 6(7!/2), also considering
the eguation ks = j = =1. | will explore these groups more deeply in
Chapter XI.

The two cases wheren = 2 and n = 3, not considered so far, are of no
interest for us. That is because A, has the order 1 and A; is cyclic and
therefore a compact group. Defining the group B,,, we started with the group
T,. One is led to the same group if one considers the second representation
group of S,, T}, instead of T,. This can be seen by showing that the elements
B, = JT5T3, B, = JTaT4, ..., By_p = JT;_1T1 of T} satisfy the relations
(V).

If n = 4, the group B, can be characterized in another way, too. Namely,
considering that the commutator of S, isthe group A, and that the commutator
of T, (or T}) contains the element J, it follows, that the group B, is nothing
but the commutator of T, (or T;). Hence, we can formulate the following
theorem:

I1. The representation group of the alternating group A, is, if nis greater
than 3 and not 6 or 7, a group with the order 2(n!/2) which is isomorphic in
the first degree to the commutator of any representation group of the symmet-
ric group S,. On the other hand, the representation groups of the groups Ag
and A; are of orders 6(6!/2) and 6(7!/2), respectively.

In the discussion of the representations of the group S, by collineations,
it is of no interest which one of the two representation groups is chosen. If
in the following the group T, is considered primarily, this has the following
reason: The elements A,, As, . . . A,_, of the group A, generate a group which
is isomorphic to the group S,_,. Analogoudly, the elements B,, Bs, ... B>
of B, generate agroup of S,_, completed by the group M. However, equations
(IV) show that this group is isomorphic to the group T,_, and not to the
group T/ .

2This follows from the equation By 'B,B, - B, = JB, - B;'B,B,.
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2. ON THE CLASSIFICATION OF THE ELEMENTS OF THE
GROUPS T, AND B,, INTO CLASSES OF CONJUGATED
ELEMENTS

Paragraph 6. If the permutation P of the group S, equals the product

SEL

of the transpositions S, = (12), S, = (23), ..., S,-1 = (n — 1, n), then the
two elements

T.TeT, ...
and
IT,TeT, . ..

in the group T, correspond to this permutation. We designate one of these
elements by P’, the other JP’. For any permutation P of S,, we have unique
fixed element P’ of T,. Hence, the n! elements P’ of T,, generate a complete
remainder system of T,, mod M and, if the equation PQ = R s satisfied for
three permutations P, Q, and R, P’ Q' equas either R" or JR'. For two
commuting (similar) permutations A and B, A’ B' equals either B’ A’ or JB'
A’. Furthermore, if P and Q are two conjugated permutations, the element
P’ in T, is conjugated to at least one of the elements Q' or JQ'.

| designate a permutation P as a permutation of the first or second kind
depending on whether P’ and JP’ are conjugated elements of T,, or not. Two
similar permutations belong to the same kind.

Now, let

Py Pl’ PZ! e Ph*l

be the complete permutations similar to the given permutation P. If P is of
the first kind, the 2h elements

P’, P, P, JPy, ... Proq, Py

generate one class of conjugated elements of T,. However, if P is of the
second kind, these 2h elements are distributed in two classes, each consisting
of h elements; here, one class turns into the other one by multiplying each
of its elements with J. We can distinguish these two cases in the following
manner, too: In the first case, there is a permutation Q which commutes with
P without Q" commuting with P’, and the number of elements of T,, which
commute with P’ equals the number nl/h of permutations of S, commuting
with P. In the second case, however, for any permutation Q which commutes
with P, Q" also commutes with P’, and the number of elements of T,, commut-
ing with P’ is two times the number of permutations of S, commuting with P.



Representation of the Symmetric and Alternating Groups 429

Now consider two (commuting) permutations A and B of which the first
leavesthe numbersm + 1, m + 2, ..., nunchanged, the second, the numbers
1,2,..., m Then A can be represented as the product of the transpositions

S_l!SZI"'ST‘I—l

and B as the product of the transpositions

S‘n+lv Sn+2! e S‘I—l

However, if \ stands for one of the indices 1, 2, ..., m — 1 and . for one
of theindicesm+ 1, m+ 2,...,n— 1, then

T)\TM = JTMT)\

and it is easily seen that the elements A’ and B’ of T, do not commute
exactly if the permutations A and B are both odd. With little effort, it can be
concluded generally:

1. If A and B are two permutations of S, of which the cycles of order
greater than one have no figure in common, then the elements A’ and B’ of
T, do not commute only if the permutations A and B are both odd; in this
case, A’ B’ = JB' A'.

Paragraph 7. With this rule the following can be proved:

IV. An even permutation is of the first kind if it has cycles of an even
order and of the second kind if it only has cycles of an odd order. An odd
permutation is of the first kind if it has at least two cycles of the same order
=1 and of the second kind if all the orders of its cycles are distinct.

To prove this theorem, we have to distinguish four cases.

(a) The permutation P is even and contains a cycle A of even order. If
P = AB, then, as P is an even and A an odd permutation, B becomes an odd
permutation. Now, A and B are two odd permutation whose cycles (of an
order greater than 1) have no figure in common. Hence, with 111,

A'B = JB'A
or
AYAB)A = JA'B

As P’ equals either A'B’ or JA'B’, it follows that A’ "*P’A’ = JP’; hence P
is a permutation of the first kind.

(b) The permutation P consists of cycles of odd order only. Then the
order a of P isodd. Hence P'* = J*, where « equals zero or one, and (JP’)
= JoJ* = jo*1 |t follows that the orders of P’ and JP’' are distinct and
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hence P’ and JP’ cannot be conjugated elements, i.e., P is a permutation of
the second kind.

(c) P is an odd permutation which contains two cycles A and B of the
same order =1. For example,

A:(OL]_,Olz,---Oim); B:(BlaBZi"'Bm)
Putting

C= (011, Bll Ao, BZ! <o Oy Bm)

then C2 = AB and P = C?2D, where D is the product of the cycles different
from A and B. As P is an odd and C? an even permutation, D becomes an
odd permutation whose cycles have no figure in common with the cycles of
the odd permutation C. Therefore we again get D'C’ = JC'D’ and

Cc'{c'?D")C’ =C'D'C’' =JC'D’
As P’ differs from C’2 D’ only by a factor J, it follows that C'"P'C’ =
JP',i.e., Pisof thefirst kind.
(d) The odd permutation P consists of r cycles C,, C,, ... C, whose

orderscy, C,, ... G, aredistinct. Then P = C,C, ... C, commutes only with
the c.Cy, . . . C,, permutations

CIC¥...CY  (v,=0,1,....c,— 1)

If s denotes the number of odd numbers among ¢,, C,, ... C,, then, as P is
an odd permutation, sis odd. Considering the elements C;, C5, C3, ... C/ of
T,, then for each two indices p and o

cC,=C,C, o CC,=JCC,

namely they obey the following rule: If c, for a fixed p is odd, i.e., the
permutation C, is even, then each p satisfies the first equation. However, if
C, is an even number and C, an odd permutation, the second equation holds
only for those s — 1 number o which are distinct from p and for which the
numbers c, are also even. Ass — 1 is even, one immediately sees that each
eement C/ commutes with the product Ci, C,, ... C/ and hence with the
element P’, too, which differs from this product only by a factor J. Hence,
P’ commutes with the 2c,c, -+ ¢, elements

JﬁCiVlCéVz Cr’v (B = 0, 1; Yo = 0, 1’ . Cp — 1)
Thus P’ and JP’ cannot be conjugated elements.

Paragraph 8. We can determine the number k;, of classes of conjugate
elements easily now.
| call a decomposition
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N=vitv+t - +v, (W=v,= =)

of the number nin even positive summands an even or an odd decomposition
depending on whether the number of the odd numbers among vy, vy, ... vy
iseven or odd. Furthermore, | denote with k,, the number of all decompositions
of ninto equa or different summands, g, denoting the number of even and
u, the number of odd decompositions of n into distinct summands. Moreover,
| think of v,, as the number of decompositions of n into equal or distinct odd
summands. As we know, the number v, also determines the number of
decompositions of n into distinct summands?’; hence

Vh = Oh t Uy (19)

Now, the number of classes of conjugated permutations of S, equals k,. To
a class of permutations of the first kind of S, there corresponds only one
class of conjugated elements in T,. However, to each class of permutations
of the second kind of S, there correspond two classes of conjugated elements
of T,. As the number of the last mentioned classes of S, equals v, + u,
(using Theorem V), the desired number k;, of classes of T, becomes

Ko — Vo — Uy + 2V, + U) = K, + Vv, + U,
Also considering equation (19), this yields
kézkn+gn+2un (20)

| aso state the following. The numbers k, and v, can be calculated in
afamiliar manner using easy recursive equations.® If one knowsv,, however,
0, and u, can be derived easily. Namely, putting

dn:gn_um dh=1
we find that (19) yields

1 1
Oh = 5 (Vn + dn)v Un = E (Vn - dn)
However, if |x| < 1,

i dx"= (1 + X1 — )L + X1 — x¥) -
0

2%Compare to Bachmann, Analytische Zahlentheorie, p. 30.
30 Compare to Bachmann, ibid., p. 28, 44.
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; (=DM dx" = (1 = (1 — )1 —x)(1 = X) -
Using an equation stated by Euler,!
o) +oo
H - XX) — E (— 1) X(3v2+v)/2
1 —o0

this yields that d, = 0 if n is not of the form (3v? + v)/2 and that d, =
(—1)(? + v)/2if n = (3v? + v)/2.
Here are some values of g, and u,:

91:11 92:0’ 93:1! g4:11 95:1!
Os = 2, o =2, =3 G=4 Go=5
U]_:O, U2=1, U3=1, U4=1, U5=2,

U5:2, U7:3, U8:3, Ug:4, U10:5

Paragraph 9. Next | consider the subgroup B, of T, which corresponds
to the subgroup A, of S.

One gets the group B, by calculating the elements P’ and JP’ of T, for
al the n!/2 even permutations P. To a class C of h conjugated permutations
of the group A, corresponds either only one class of 2h conjugated elements
in the group B, or two classes of h elements each, where one class can be
turned into the other one by multiplying each of its elements with J. If P is
a permutation of the class C, then the first or the second case appears
depending on whether P’ and JP’ are conjugated elements of B, or not.

In order to carry out the classification of elements of B,, into classes of
conjugated elements, we have to decide for which of the even permutations
P the elements P’ and JP’ are conjugated with respect to the group B,,. Such
a permutation P is characterized by the fact that one can find an even
permutation Q commuting with P such that P’ and Q' do not commute but
rather satisfy the equation P'Q’ = JQ'P’.

If P isa permutation of the second kind (i.e., a permutation of an odd
order), then P’ and JP’ are not even conjugated within T,,, and hence not in
B, either. Therefore we only have to examine the even permutations of the
first kind, i.e., those even permutations among whose cycles there appear
some of an even order. | will show now:

31 Compare to Bachmann, ibid., p. 24
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V. If Pisapermutation of the first kind, then P’ and JP’ are conjugated
elements of B,, always and only if P contains at least two cycles of the same
order m= 1.

Namely, if A isacycle of even order of P, then, as we have seen before,
A'"1P’A’ = JP’. Moreover, P shall contain two cycles

Bz(BllBZ"'BI’ﬂ)’ Cz('Yl”YZ:---Ym)
of the same order m = 1; one of the cycles B and C may equal A. We put

D = (Blv Y1, BZv Y25 - .- Bm’ ’an)

such that D? = BC. If P = BCF = D?F, then F, as P is even, is an even
permutation; according to Theorem Ill, D'F’ = F'D’ and hence

D'"YD'?F')D’ = D'?F’
It follows that D'"'P'D’ = P’ and therefore

(A'D")"P'(A'D’) = JP’
As A and D are odd permutations, AD is contained in A, and A'D’ in B,.
Hence P’ and JP’ are conjugated in B,.

Let P be composed of r cycles Cy, C,, ... C, with distinct orders c,,
Cy, ... G. Then P commutes only with the ¢y, C,, ... ¢, permutations

CIICR - C" (v,=0,1,...,¢c,— 1)

within S,. Among these permutations, those are even at which the sum of
all y, corresponding to even ¢, isan even number. AsP isan even permutation,
the number s of even numbers among the c, is even. Similarly to case (d)
in Paragraph 7, we conclude that the element P’ commutes or does not
commute with the element C, or T,, depending on whether ¢, is odd or even.
This yields that P’ always commutes with the element

CMCyy2 - Clwr

if the corresponding permutation C7C¥? --- C}" is even. As a result, there
is no even permutation Q commuting with P such that P’ and Q' become
noncommuting elements. This implies that P’ and JP’ cannot be conjugated
elements of B,,, g.ed.

Paragraph 10. In the following it will be shown that, if |, denotes the
number of classes of conjugated elements of the group A, the corresponding
number for the group B,, becomes

Ih=1,+ 20, + u, (22)

where g, and u,, have the same meaning as in Paragraph 8.
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Considering a class C of h conjugated even permutations of the group
S,, one sees that they also build up a class of conjugated elements in the
group A,. There appears an exception only if the cycles of each permutation
of C have distinct orders; in this case, the h permutations of C in the group
A, can be divided into two classes of 1h conjugated elements each. One class
can beturned into the other one by transforming its elements using an arbitrary
odd permutation.?

If vy, is the number of decompositions of n into distinct summands, the
even permutations of the second kind in the group A, are distributed over
V, + V;, classes of conjugated elements. To these classes there correspond
exactly 2(v, + v;) classes of conjugated elements in the group B,. Denoting
with gy, the number of even decompositions of n into distinct summands
(among which may also appear even numbers), one has in A, exactly g,
classes of conjugated permutations belonging to the first kind and whose
cycles have distinct orders. By Theorem V, there correspond exactly 2g;,
classes of conjugated elements in the group B, to these g, classes. In contrast,
to each of theremaining |, — (v, + vy + g) classes of A, there belongs only
one class within B,. Hence,

lh="Tn— (Vo +Va+gn) + 20 + Vo + G0) = ln + Vo + Vo + 05

However, as v, + gn =g, and v, = 0, + U, equation (21) follows
immediately.

I will cal those even permutations whose cycles have distinct orders
permutations of the third kind. Such a permutation is also of the first kind
if there appear even numbers in the orders of its cycles and of the second
kind if al these orders are odd. There are only two permutations P and Q
of the third kind at which P’ and Q" are conjugated within T,,, but not within
B,.. Two such elements of B, will be called conjugated elements. Analogously,
| call two permutations of A, that are conjugated within S,, but not within
A, conjugated permutations.

3. ON THE ASSIGNMENT OF THE ELEMENTS OF THE
GROUPS S, AND T,

Paragraph 11. We have not yet made a convention on which of the two
elements of T, corresponding to a permutation P of S, shall be designated
as P'. It is essentia to fix the name. Hereby, we try to achieve that for each
two permutations P and Q which are conjugated within S, or A,, P’ and Q'
become conjugated elements of T,, or B,

32Compare to Frobenius, Ueber die Charaktere der alternierenden Gruppe, Stzungsber. K.
Preuss. Akad. Berlin (1901), p. 303.
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A cycle
Coo=(p+1l...p+v-—-1)
of order v can be represented as

Cu,v = Sx+v72§1‘+1173 SJ,
using the transpositions §, = («, o + 1). Then, we will define the element

C;,J,,v = T|J,+V*2T)J,+V*3 e T

n

If v is odd, among the two elements C|,,, and JC|, ,,, only one is conjugated
to the special element C;, within T,,, according to Theorem 1V. However, it
is easy to see that this happens with the element C| ,. Indeed, the two groups
T, and T, which are generated by the elements T;, T, ... T,y and T, T, 14,
... Ty+v—2 respectively, are isomorphic according to the relations (1) that
define the group T,,. Namely, one gets an isomorphism between these groups
by mapping the generating element T,., of T, to the element T, of T,.
This implies that C;, and C|,, have the same order v', where v’ is equal to
vor 2v.3 If Cj, and JC, , were conjugated elements of T,, they would be
of the same order, which is not the case as v is odd.

If Aisan arbitrary cycle of odd order v, only one of the two elements
of T, that belong to A is conjugated to the element Ci,. This element |
designate as A’. Moreover, if

P=AA A,
is a permutation whose cycles A, A,, . .. A, have only odd orders, | put®
P = ALA; - AL (22)

Here, the elements A, As, . . . A, according to Theorem 111, commute with
each other because the permutations A, are even. Therefore, the sequence
of the factors A, in (22) can be changed arbitrarily. The order of the element
P’ is nothing but the smallest divisor of the orders of Aj, A;, ... A, One
can see easily that the element to be called Q' is conjugated to the elements
P’ of T, or B, if Q is a permutation conjugated to P within S, or A,

C shall be a cycle with even order which satisfies the condition that it
only contains the numbers ., o + 1, ... w + v — 1 (in an arbitrary order).
Then, C can be represented as a product of the transpositions §,, S, 14, . . .
S,+v—2 like the cycle C, ,. Therefore, the two elements of T, belonging to

3|t can be shown that v' + v or v + 2v, depending on whether (—1)*?~Y8 equals 1 or —1.
If v is even, the order of C|, becomes v if v = 8\ orv =8\ + 6, but 2vif v = 8\ + 2
orv =28\ + 4.

#If P=E, | asoput P’ =E, of course.
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C are contained in the already considered group T,. According to Theorem
1V, there is only one of these two elements conjugated to the element C,
with respect to the group T,. The element characterized hereby will be
designated as C’'. Then with two distinct cycles B and C of the order v only
containing the numbers p, w + 1,... w + v — 1, B’ and C’ are conjugated
to each other in the group T,.

Next we consider the permutations P with the m cycles

Cl == Cl,vl == (1, 2, . Vl),
C2=C],1+1'v2=(V1+1,V1+2,...V1+V2),...

where v, > v, > ... > v, = 1 and there shall be even numbers among the
v, such that P is a permutation of second or third kind. Then we have

P = C]_Cz Cm
Correspondingly, | put
P =CGC; - C,

In this equation, the order of the factors may not be changed arbitrarily any
more. It has to be mentioned, however, that those factors C,, with which the
v, are odd can be ordered freely. The element P’ stays unchanged if one
writes first the factors C,, with an odd v,, and then the factors with even v,
such that their values decrease.

For any permutation Q whose m cycles have the same orders vy, v,, -
v asthose of P, P and Q are similar permutations. Among the two elements
of T, that belong to Q only one is (according to the Theorems 1V and V)
conjugated to the element P’ with respect to T, if P and Q are odd permuta-
tions, and, if P and Q are even, only one is conjugated with P’ with respect
to B,. | designate the element that satisfies the first or the second condition
as Q.

We have now made a particular convention for all the permutations P
of second or third kind determining which element of T, shall be called P'.
We think of the designations for the permutations of the first kind as fixed.
Considering that for each of these permutations P the elements P’ and JP’
are conjugated with respect to T, and, if P is even, aso with respect to B,,
one sees that as a matter of our conventions the condition formulated earlier
is satisfied: if P and Q are two permutations being conjugated in S, or A,,
then P’ and Q' are conjugated elements of T, or B,.

Paragraph 12. We have to make a remark that is essential for the
following. It refers to the case that the permutations can be decomposed into
cycles of distinct orders.
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In particular, be Q a permutation with m cycles D4, D, ... Dy, of the
orders v; > v, > -+ v, such that the cycle D, only contains the numbers

vitvt vt Lo vty (23)

in an arbitrary order. We have already arranged which elements of T, are to
be called Q’, D1, D3, ... Dy, In any case,

Q" = J*DiD; - Dy (24)

where « is 0 or 1. We will examine the conditions that determine whether
a=00ra=1
| call the symmetric group consisting of al the v,! permutations of the
indices (23) H, and the subgroup of the order 2 - v,! of T, corresponding
to the subgroup H, of S,, K,.. If C, has the same meaning as before, then
C, and D, aresimilar permutations of H,,; also, according to our conventions,
C,. and D;, are conjugated elements of K. Let H, be a permutation of H,,
satisfying the condition
H,'C,H, =D

n

Then,
H,'C,H, = D,

If v, is even, we choose H, to be an even permutation, which is aways
possible. If v, is odd, however, H, is an even permutation if C, and D,, are
conjugated with the indices (23) in the aternating group, but if H, is odd,
thisis not the case. L et the number of indices . such that H,, is odd be equal
to r and s be the number of the even numbers among the v,,. If v, is even,
H,, always commutes with C; and D, if p = u, asH, is even, according to
Theorem I11. The sameisvalid with an odd v, associated to an even permuta-
tion H,. However, if v, isodd and so isH,,, then H|, commutes with C, and
D, if p = p and v, are odd; though, if v, is even,

H, *C,H,, = JC,, H, 'D;H, = JD,
Putting
H=HH, - Hy
it follows that
H' = JPH{HS - Hi,

where B is 0 or 1. One can see easily that, if P’ denotes the product
C1, G- Gy
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H'"1P'H’ = J*DiD} -+ D}, = I Q' (25)

| claim now that in equation (24), « equals 0 or 1, depending on whether
r is even or odd.

Let s be odd. Then, P and Q are odd permutations. Q' denotes the
element of T, conjugated to P'. Hence, it follows from (25) that

H'~'P'H’ = Q' = J'DiD} -+ D,

i.e, a =r (mod 2). Otherwise, if sis even, P and Q are even permutations
of the third kind. In this case Q' shall be conjugated to P” with respect to
the group B,. If r is even, H is an even permutation, hence, H'"'P'H’ =
Q'. Equation (25) tellsusthat « = 0. If r isodd, H is an even permutation
and hence, H'"*P'H’ = JQ'.*® According to (25), a = 1.

4. GENERAL PROPERTIES OF THE CHARACTERS OF THE
GROUPS T,, AND B,

Paragraph 13. Considering an arbitrary representation of a finite group
H by homogeneous linear substitutions in f variables (matrices of fth degree)
and with x(R) being the trace of the substitution corresponding to the element
R of H, one designates the system of numbers x(R) as a character of fth
degree of the group H, according to Mr. Frobenius.® If the representation is
irreducible, x(R) is called asimple character. Two representations are equiva-
lent exactly if they possess the same character. The number of simple charac-
ters x@ (R), x* (R),. . . equals the number of classes of conjugated elements
of H and these characters satisfy the relations

2XORXOIRT =h FxORXOR™?) =0 (26)

where R stands for any element of H and h is the order of H.¥’
Moreover, one calls the system of numbers

{R) = roxOR) + rixXO(R) + ...

acomposed character of H, wherery, ry, . . . are arbitrary integers. It follows
from (26) that

%5This follows from the fact that Q" and JQ’ are conjugated within T, but not within T,,.

%6This immediately implies that X(R) = x(R’), where Rand R’ are conjugated elements of H.

S7Easy proofs of these theorems which have been formulated, by Mr. Frobenius in a number
of works (Stzungsber. K. Preuss. Akad. Berlin, 1896—1899) first can be found in two works
by Mr. W. Burnside (Acta Math. 28, 369, and Proc. Lond. Math. Soc. Ser. 2 (1904), 1, 117,
also see my work, Neue Begruendung der Theorie der Gruppencharaktere, Stzungsber. K.
Preuss. Akad. Berlin (1905), p. 406.
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2URLR Y =hr§+ri+..) (27)

{(R) is a simple character only if this sum equals h and {(E) > O. If none
of the numbers ry, rq, ... is negative, there belongs a representation of H
by matrices of the order {(E) to {(R); in this case, {(R) is aso caled an
actual character.

Next let H be one of the groups T, or B, and, correspondingly, let G
be either S, or A,. If the (actual) character of fth degree x(R) of H satisfies®®

xQ) =ix(E), j==1

the matrices corresponding to the elements R and JR in the representation
of H belonging to x(R) differ only by a factor j, such that

XJIR) = jx(R) (28)

These two matrices determine only one fractional linear substitution and the
totality of these substitutions builds a group K isomorphic to the group G
which | will call the collineation group belonging to the character x(R). If
k denotes the order of K, K can be written as a group of k homogeneous
linear substitutions exactly if j = 1 or n = 3 (compare to Paragraph 2).

A character x(R) of H satisfying equations (28) will be called acharacter
of the first or second kind depending on whether j = +1orj = —1.

If x(R) is asimple character of the first kind of H, then the numbers

X(P) = x(P") = x(IP’)

build a simple character of G. In this connection, P’ denotes the element of
T, or B, associated to the permutation P of S, or A,. Conversely, one obtains
from each character X(P) of G a simple character of the first kind x(R) of
H by putting the numbers x(P’) and x(JP') equal to Xx(P). Therefore the
number of simple characters of the first kind of H equals the number of
simple characters of G, i.e., the number of classes of conjugated elements
within the group G. With the numbers k,, ki, I, |5, Va, 0, @nd u, having the
same meaning as in Paragraphs 8 and 10, we obtain the following result:
The number of simple characters of second kind in the group T, equals

krl1_kn:gn+2unzvn+un
and in the group B,
Ir’1_|n=2gn+unzvn+gn

As the characters of the groups S, and A, are already known (see

%8 This condition is automatically satisfied in the case of a simple character
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Introduction), the characters of the first kind of T,, and B,, can be neglected
and we only care about the characters of the second kind.

Paragraph 14. From every representation A of the group T, by homoge-
neous linear substitutions (matrices) one can obtain a second representation
A’ by leaving the matrices of A corresponding to the elementsof B, unchanged
and changing the sign of the remaining ones. | call A and A’ associated
representations and the corresponding characters associated characters of
T,. Two associated charactersx(T) and x'(T) of T,, are marked by the fact that

x'(T) = (= x(T)

wheretis0or 1, depending on whether Tiscontainedin B, or not. Particularly,
if x(T) = x'(T), i.e,, x(T) = 0 with al the elements T of T, not contained
in B,, | designate x(T) as self-associated or as a two-sided character.

For asimple, not two-sided character x(T) of T,, it followsfrom (26) that

2x(Mx(TH=2n, X (=YXMxTH =0 (29)

> x(B)x(BY =n! (30)

Here, T stands for any element of T, and B for any element of B,. For a
simple two-sided character x(T),

> x(B)x(B™Y) = 2n! (31)

This implies that the numbers x(B) = &(B) of the first case represent
a simple character of the group B,,; in the second case,

X(B) = ¥(B) + ¥(B)

where s(B) and s(B) are distinct simple characters of B, [compare to (27)].
It is easily seen that two associated characters of T, are either both of the
first or both of the second kind. Also, the characters &(B), s(B), and (B)
of B,, are of thefirst or second kind depending on whether the character x(T)
of T, is a character of the first or second kind.

Among the g, + 2u, simple characters of second kind of T, there shall
be r two-sided ones and 2s not two-sided ones. As the latter appear as pairs,
sisan integer. Keeping in mind that to each pair of associated characters of
T, there belongs only one simple character of B,, but to each two-sided
character of T,, two characters of B,, one obtains 2r + s simple characters
of second kind of B, in total. Using equations (26), one can see that these
2r + s characters are distinct; moreover, according to a theorem by Mr.
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Frobenius,® these are all the simple characters of second kind of B,. As the
number of these characters is 2g, + u,, it follows that

2r +s=2g,+ u,
On the other hand,
r+2s=g,+ 2u,
hence,
r = gn, S = Uy, r+s=g¢g,+ U, =V

The number of two-sided (simple) characters of second kind of T, equals
the number of even decompositions of n in distinct summands.

Also, | state that the number of two-sided characters of first kind of T,
equals the number of decompositions of n in distinct odd summands.*°

Paragraph 15. If C is an arbitrary element of T, not contained in B,,,
e.g., the element T, corresponding to the transposition S, = (1, 2), one obtains
an outer automorphism A of B, by assigning to the element B of B, the
element B = C~* BC. Any character 6(B) of B, thus yields a second character
6(B) such that

0(B) = 0(B)

Two such characters are denoted as adjunct characters.** One concludes
immediately that if 8(B) is a simple character of first or second kind, 6(B)
has the same property.

| will show now that the two characters s(B) and {s(B) of B, developed
from a two-sided (simple) character x(T) of T, are adjunct.

Consider an (irreducible) representation A of T,, by matrices of the degree
f = x(E) which belongs to x(T). The matrix corresponding to the element
T will be caled T, too. As the representation associated to A is equivalent
to A, one can name a matrix H with a nonvanishing determinant such that

HTH = (-1)°T (32)

where 1 has the same meaning as before. This yields that the matrix H?
commutes with any matrix of A. As A isirreducible, H2 = aE;, where a is
a constant and E,, denotes the identity matrix of ath degree. We can assume
without reducing the validity that a = 1 such that H? = E;. Hence, one can
choose a matrix M with a nonvanishing determinant such that

39Ueber die Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen,
Stzungsber. K. Preuss. Akad. Berlin (1898), 501.

40 Compare to Frobenius, Ueber die Charaktere der symmetrischen Gruppe, Paragraph 6, and
the dissertation of the author, Paragraph 23.

“1The character 8(B) does not depend on the choice of the element C.
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E 0
-1 _[Ep
M ~tHM (0 —Ep>

where p and g are positive integers with sum f. Substituting for the matrices
T the matrices M~1TM, one obtains a representation equivalent to A where
the matrix M~*HM plays the samerole as H in A. Hence, we can assume that

E, O
0 -E

Equations (32) then yield that, if the elements of T,, contained in the subgroup
B, are caled B, the others C, the matrices B and C in our representation A

are of the form
_ (P O (0 Q
o= (5 8} <[5 8]

where P and P are quadratic matrices of the degrees p and g, Q is a matrix
with p rows and g columns, and Q is a matrix with g rows and p columns.
If p = g, the determinants of C would vanish, which is not the case. Hence,
p=qgandf=2p.

The matrices P and P obviously generate two representations of the
group B,,. However, aswe know that x(B) appears asthe sum of thetwo simple
characters s(B) and s (B) of B, these representations have to be irreducible.

We can assume that {s(B) is the trace of the matrix P and s(B) the trace
of P.

Let C be an element of T, to which there corresponds a transposition
in S,, eg., the transposition S, = (1, 2). Then, the element C2 equals J, i.e.
the matrix C? equals jE;, where j = +1. Hence, we obtain QQ = QQ =
JE. It is easy to see that the representation A can be replaced by an equivalent
representation in which

_ (0 K
©° (j B 0)

and H stays unchanged. For C of this form, we obtain

P O
—1 _
CBC (0 P)

This implies, which is to be shown, that
$(C™BC) = (B),  $(C'BC) = ¥(B) (33)
Paragraph 16. | also put



Representation of the Symmetric and Alternating Groups 443

3(B) = %(B) — ¥(B)

and designate the system of n! numbers 8(B) as the complement of the two-
sided character x(T). As s and {y commute, the complement 5(B) is deter-
mined only up to a sign by the character x(T). This sign has no meaning in
this context, as it suffices to know, apart from the numbers x(J), either the
numbers §(B) or the numbers —3(B) in order to be able to name the two
characters s(B) and {s(B) of B,.

The number 3(B) is nothing but the trace of the matrix HB. Hence, if
one knows a representation A belonging to the character x(T) and with H
being a matrix satisfying the equation H? = E; and also the conditions (32),
one only has to name the traces of the matrices HB in order to determine
the complement of the character x(T).

If x(3) = jf, then the numbers §(B) satisfy the equations

3(3B) = j3(B) (34)
and also, following from (27),
% 3(B)3(B™Y) = 2n! (35)
For any element C of T,, which isnot contained in B,,, it follows from (33) that
3(C1BC) = —3(B) (36)
In particular, if B = C'BC and B are conjugated within B,,, then
3B) =3(B) =0 (37)

Only if B and B can be called adjunct elements of B, in the sense of Paragraph
10 can 8(B) not be zero. Therefore, the complement 3(B) has to be determined
only with such elements B of B, to which correspond permutations of the
third kind in A,.

Generdly, let £(T) be an arbitrary composed character of T,, being self-
associated, i.e., which satisfies §(T) = 0 if T is not contained in B,. Then
there is an infinite number of different ways to put

E(T) = rax(T) + rex® + ...+ rx®(T)
where
X©(T), x®B(T), ... (38)

are simple, not necessarily distinct characters of T, and r,, rg, ... I, ae
integers. However, if &(T) satisfies the condition

£Q) = j&E), j==*1

then also



444 Schur

X9Q) =ix“(E), x®PQ)=ix®PE), ... x¥Q) =ix(E)

X©(T), xBU(T), ... x*(T)

are al the two-sided ones among the characters (38) and if one knows
the complements

5)(B), 3®(B), . .. 3*)(B)

then | designate as a complement of the two-sided character &(T) any system
of numbers

3(B) = € d@(B) + €prgd®P(B) + - + €1,3%(B)

where the €,, €z, . . . €, have the values +1.?

Hence thereis an infinite number of complements assigned to each two-
sided character £(T). In any case, the numbers 8(B) satisfy the conditions
(36)—(37); moreover, one obtains two adjunct (composed) characters 6(B)
and 6(B) of B, with their sum being &(B) by putting

0(B) = 3[&(B) + 3(B)],  6(B) = [£(B) — 3(B)]
If, in particular, £(T) = x(T) is a Simple character, 6(B) and 6(B) become
actual characters of B, only if
3(B) = =[W(B) = ¥(B)]

where s(B) and {s(B) have the same meaning as before. These two special
complements of x(T) are considered, as mentioned above, as not essentially
distinct. Talking of the complement of a simple two-sided character, we mean
one of those two complements.

Paragraph 17. If x(T) is an arbitrary character of second kind of T,,
then with each permutation P of S,

x(P") = —x(P")

where P’ is the element of T, to be determined by the rules of Paragraph
11. Moreover, as, with each permutation being of the first kind, P’ and JP’
are conjugated elements of T, and hence x(JP’) = x(P’), it follows for any
permutation of first kind that

x(IP’) = x(P’) = 0

It is therefore sufficient to name only the numbers x(P’) for the permutations
of second kind if x(T) is a character of second kind.

“21f thereis no two-sided character among those of (38), | say that the complement of £(T) is zero.
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Aswe have chosen the elements P’ such that to two conjugated permuta-
tions of S, correspond also two conjugated elements of T, the number x(P")
isonly determined by the class of similar permutations of S, which includesP.

Such aclassis called even or odd depending on whether its permutations
are even or odd. [a] denotes a class whose permutations exclusively consist
of cycles of an odd order. If, among the cycles of a permutation p of [«a],
a; cycles are of the order 1, a3 cycles of the order 3, etc., | put

[OL] = [OL]_, Qag, .. ] and X(P’) = Xa T Xocl,(xz,...
The class [a] contains

n!
lalOL]_! 3"‘30L3! PR

h,

permutations and this also is the number of elements of T,, conjugated with
P’. The number of classes [a] equals v,. Noting that P and P~* are similar
permutations and that the order of P is odd, one sees that P’ and P’ 1 are
conjugated elements of T,. In our case, therefore, x(P’') = x(P'~%) and all
the numbers x,, are real.*® Especialy, if x(T) is a simple character of second
kind, (30) and (31) imply

|
S hoé = 2 (39)

where the sum goes over al v, classes [a] and € is O or 1 depending on
whether x(T) is a two-sided character or not. It also follows from (26) that

> XXl = 0 (40)

where x(T) and x'(T) are two distinct characters not associated to each other.

Apart from the classes [«] which contain all the even permutations of
second kind, we also have to consider those classes of S, whose permutations
can be decomposed into cycles of distinct orders. | designate such a class a

v), (p), ... and put
) = (v, va - .. Vi) (41

“Generally, x(T) and x(T™1) are conjugate complex numbers for any character. It is also
easy to conclude that all the numbers x, are real; this, however, will be shown later in a
different manner.
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and
X(P") = X6) = Xtwivorom
if a permutation P of (v) contains exactly m cycles of the order
Vi, Vo ... Vi i>vy > > v > 1)

The number of classes (v) also equals v, but those among them with
which the vy, vy, ... v, are odd are aso contained among the classes [«].
The numbers x,) have to be named only for the u, odd classes (v) because
the remaining ones either appear among the numbers x, or are zero by
themselves. If x(T) is atwo-sided character, x,, also becomes zero with any
odd class (v). In this case, we will have to specify at least one complement
d(B) of x(T). If P denotes the permutation

(1,2,...V1)(V1+l,'l)1+2,...'|)1+'|)2)"'

of the class (41) and if P’ is the fixed element of T,, as mentioned above, |
put with (v) being an even class

8(P/) = 8(v) = 8(v;]_,vz,...vm)

Knowing the numbers 3, for all the g, even classes (v), one can specify all
the other numbers 3(B), too, according to equations (34)—(37). In our case,
we haveto put j = —1.

Defining the number n!/vyv, . . . v, of permutations of the class (41) as
h.), one obtains with a simple character of second kind which is not two-
sided the equation

_ n!
> hoXeXe) = > (42)

Similarly, with (35), the complement of a two-sided character becomes

2 Nwdude) = ! (43
In (42), the sum contains al the odd classes (v) and in (43) all the even ones.
Moreover, X(,) and d, are the numbers complex conjugated to x(,) and 3.

| derive two other formulas which will be important in the following.
Generally, with each permutation P of S,,

S xPP Y = 5

where the sum includes al the simple characters of first and second kind of
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T, and hp is the number of elements of T, conjugated to P'.* If P is a
permutation of second kind, then hp aso denotes the number of permutations
of S, similar to P. As the n! numbers x(P") = x(P), with each character of
first kind, generate a character of S, it follows that

! ! r— nl
2 XxPXP =
X P
where the sum includes all the characters of the first kind. Hence,
" ’ =7 n!
> Xx(P)X(P' Y = —
X he

where x becomes any of the v,, + u, characters of the second kind. | will
call the v, smple characters of the second kind among which are no two
associated to each other

XB(T), XO(T), ... x¥(T)

Furthermore, let €, be equal to O or 1, depending on whether x®(T) is
atwo-sided character or not. The last equation can then be rewritten, if P is
contained in the class [«], as

I
D Zepxg’)z = E_ (44)
p

o

However, if [a] and [B] are different classes, one obtains similarly
> 2x@xf) = 0 (45)
P

5. ON THE COLLINEATION GROUPS BELONGING TO THE
CHARACTERS OF THE GROUPS T,, AND B,

Paragraph 18. As in Paragraph 13, let H denote one of the groups T,
or B, and G beeither S, or A,. If gistheorder of G, the order h of H equals 2g.

Again, consider a simple character x(R) of H and a representation A of
H belonging to x(R) by matrices (R). For any permutation P of G, denote
the collineation determined by the matrices (P") and (JP") by P and the group
generated by this collineation by K.

It has to be mentioned first that if n = 4 and x(R) is a character of
second kind, the g collineations P must be distinct. If this were not the case,
there would at least be one permutation P distinct from E such that P = E

%“This is one of the basic equations of the theory of group characters. Compare to my work,
Neue Begruendung der Theorie der Gruppencharaktere, Equation (X1V).
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and these permutations would build an invariant subgroup F of G. If n > 4,
it would follow that F = Gor G = §,, as A, is a simple group and S,
contains only this one invariant subgroup A.. If n = 4, the group of the
four elements

E, A= (1 2)3,4), B = (1, 3)(2, 4), C=(14(273

would have to be considered for F. In any case, F contains the permutations
A and B. For the corresponding elements A" and B’ of H, the matrices (A’)
and (B’) in our representation A would only differ by a constant factor and,
hence, commute. However, if Ty, To, . . . denote the elements generating the
group T,,

A’ = JOLTng, B, = JBT2T1T3T2

andthisyieldsA’'B’ = JB'A’. According to our assumption about the character
x(R), in any case (J) = —(E), it follows that (A")(B") = —(B')(A"), which
leads to a contradiction.

Therefore, the collineation group K belonging to a character of the
second kind of H is always isomorphic to the group G if n = 4.

Similarly, it can be concluded that the group K is not isomorphic in the
first degree to the group Sif the order f of a ssimple character of first kind
of HequaslorG =S andf = 2.

Paragraph 19. Let X(R) denote a simple character of H different from
x(R) and corresponding to the representation A of H by the matrices (R).
The corresponding collineation group shall be called K; furthermore, {P}
shall be the substitution of K corresponding to the permutation P of S.

We will examine the conditions under which the groups K and K equal
each other, apart from the ordering.

We have to distinguish between two cases.

(@) Let {P} = {P} for each permutation P of G. Then, the coefficient
matrices of these two collineations differ only by a number and therefore,
with any element R of H,

(R =t (R
which yields
X(R) = r - x(R) (46)

where the { are certain numbers. The first equation implies with any two
elements R and S of H
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{rls = Crs

i.e., the numbers { build alinear character of H.*° If H = T,,, the commutator
of H is the subgroup B, with index 2. Apart from the main character (g =
1, which is of no interest, there is only one other linear character which can
be obtained by putting (g = 1 or {g = —1, depending on whether R is
contained in B, or not. Equation (46) then shows us that x and X become
associated characters. Also, one concludes immediately that the collineation
groups belonging to two associated characters of T, are to be considered as
not distinct.

Let H now be the group B,.. For n > 4, the commutator of B, contains
all the elements of the goup and it followsthat B, has only the linear character
{r = 1, which will be excluded again. However, if n = 4, B, possesses three
linear characters {o(R), {1(R), {x(R), which are determined by

La(ToTy) = p%, o(TsT) =1

where p isa primitive cubic root of the identity. The group B, is an exception
which has to be considered in the following.

(b) In this case, let the substitution { P} of K be equal to the substitution
{P} of K, where P, means a permutation of G which not necessarily equals
P. We obviously obtain an automorphism A of G by assigning the permutation
P, to P. Firdt, if Alisan inner automorphism of G, there exists a permutation
H within G such that H"'PH = P,. This, however, leads to case (a) if one
substitutes K by the group equivaent to it which is generated by the linear
transformation H.

Hence, A is an outer automorphism of G. If G = §,, we only have to
consider the case where n = 6, as S, is a complete group with n = 6. Hence,
G = A, If n = 6, again A can only be an automorphism obtained by
transforming al the permutations of A, by an odd permutation U. Thisyields
P, = U~!PU; according to the assumption, the collineations {U~*PU} and
{P} are the same. Designating the element U’ belonging to U in T, by C,
one discovers that the representations A and A of the group H = B, are
connected such that with any element R of B,,

(C'RC) = &r- (R) (47)

where { is a constant. These numbers {y build another linear character of
B,. Neglecting the case where n = 4, it follows that {z = 1. Therefore,
equation (47) implies

4Compare to Frobenius, Ueber die Primfaktoren der Gruppendeterminante, Sitzungber. K.
Preuss. Akad. Berlin (1896), p. 1343.
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X(C'RC) = X(R)

i.e, x and ¥ are adjunct characters of B, (compare to Paragraph 15). Con-
versaly, with x and ¥ being adjunct characters of B, the group K becomes
equal to K or to a group equivalent to K if one permutes the elements of K
with the automorphism A of A,. In this case | call K and K adjunct groups
(see Introduction).

In the previously excluded case n = 6, either with S; or A, one has to
consider the well-known automorphism A which assigns a permutation of
the form (aB+y)(8em) to each cycle of the order three. Moreover, as we will
seelater, in each of the groups Tg and Bg, there exist certain pairs of characters
x and ¥ whose collineation groups are transformed into each other by the
automorphism A.

Paragraph 20. If one wants to know only those irreducible collineation
groups which are isomorphic to the groups S, or A, and cannot be written
as groups of n! and n!/2, respectively, homogeneous linear substitutions, one
has to consider only the simple characters of second kind of T, or B,.
Furthermore, two associated characters within the group T,, and two adjunct
ones within B,, are not essentialy distinct. With the results on the number
of characters of the second kind within the groups T, and B, obtained above,
we can state the theorem announced in the Introduction:

VI. For n > 3 and not 6, the number of essentially different irreducible
collineation groups isomorphic to S, which cannot be written as groups of
n! homogeneous linear substitutions egquals the number v,, of decompositions
of n into distinct summands. If n > 4 and not 6 or 7, the corresponding
number with the group A, also equals v,,.

The group S is an exception as a matter of the outer automorphism
mentioned above. Here, as | emphasized in the Introduction, only three of
the v, = 4 collineation groups are essentially different. For the group A,, the
v, = 2 collineation groups reduce to only one group because of the appearing
of linear characters within the group B,. The casesn = 6 and n = 7 play
an important role only with the group A, as the groups Bg and B; are no
longer the representation groups of Ag and A;.

6. THE PRINCIPAL REPRESENTATION OF SECOND KIND OF
THE GROUP T,

Paragraph 21. In this paragraph, | will set up and examine the collinea-
tion group of order 2("Y2 jsomorphic to S, which | mentioned in the
Introduction.
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For
A=(an), B=(b,)
two matrices of ranks p and q, the matrix of rank pq
auB a,B - B
anB axpB - ayB
amB apB - ayB
will be called A X B. If C denotes a third matrix of rank r, then
(AXB)yXC=AX(BXC)

This matrix of rank pgr is called A X B X C. Analogously, with m matrices
Ay, Ay, .. LA, Of arbitrary ranks, we define the symbol

A X Ay X oo X AL (48)

If the A, Ay ... Ay, are al equal to a matrix A, | will designate (48) as
I1, A. The trace of the matrix (48) equals the product of the traces of the
matrices A, Ay, . .. Ay Moreover, with m arbitrary matrices By, B,, . .. By,
and B, being of the same rank as A,, we obtain*

(Al X A2 X - X Am)(Bl X BZ X e X Bm) = A]_Bl X A282 X oeee (49)
X A]_Bl

Consider next the four matrices with rank two:

R e R N N

These matrices satisfy the following conditions:
A=F B=-F C?’=F
AB=-BA=-C, BC=-CB=-A CA=-AC=B (50
CBA=F
Next, form, for an arbitrary m, the matrices of rank 2™,
M, = ,A My=I,,AXB,  Mzg=I,,AXC,...
M,, =11, AX B XII,_; F, Mopir =TI, AXCXII,_,F ...

4 Compare to A. Hurwitz, Zur Invariantentheorie, Math. Ann. 45, 381, and my dissertation,
Paragraph 6.



452 Schur

Mom = B X Iy, F, Momip = C X Il 1 F

These 2m + 1 matrices satisfy the equations, according to (49) and (50),

M%v = _Ev M%v+1 =E (51)
MM, = —M, M, (52)
Mom1Mom - MaMy = E, (53)

where E = 11, F denotes the identity matrix of rank 2™
Equations (51) and (52) yield that any product of the 2m matrices M,
M,, ... My, equals one of the

1o () + () + (o) - =

E, My, My, . . . Moy My My, My Mg, . . . Morm—g Mo - - - My My . . . Mon,
(54

matrices

neglecting the sign. Without great effort, one can also see that these matrices,
apart from the sign, arein accordance with the 4™ matrices which are obtained
by substituting for the A, A, ... Ay in (48) the matrices F, A, B, and C in
any possible manner. As the traces of F, A, B, and C are al zero, it follows
that among the matrices (54)—I will call them Xg, Xy, X5, . . .—only the first
one has a nonzero trace; the trace of Xy = E, however, equals 2™. Moreover,
the matrices Xq, X1, X5, . . . @rereproduced, apart from the sign, by multiplica
tion, namely,

X2 ==*E XX ==X,

where . is not zero.
This implies that the Xy, X3, X5, . .. are linearly independent, i.e., if

aOXO+a]_X1+a2X2+...:O
multiplication with X, yields
aOXOXX + .-+ ax_lxx_lxx * aXE + a,XHXXHXX + - = O

As the trace of the matrix on the left-hand side equals +2Ma,, it follows that
a, = 0. Considering also that the number of matrices X,, X3, Xy, . . . equals
the square of their rank, one discovers that any matrix of the rank 2™ can be
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represented as a linear homogeneous combination of the Xo, Xi, X, .. ..
Hence, the matrices M,, M,, . .. My, generate an irreducible group.*

Paragraph 22. With the help of the matrices My, Mo, ... Moy, 1, We
can now make up a representation of second kind of the group T,.

Under the assumption that m = [n — /2], i.e,n=2m + lorn =
2m+ 2, | put

T)\ = a>\_1|\/|)\_1 + b)\M)\ ()\ = 1, 2, R | 1) (55)
where
Jv iJv+1
Ay = T —, b2v+1 = T
2v+1 2v+1

iv2v + 1 J2v + 3

A1 = T —, T =0,12...
2T T vt 1 N )
Here all the roots are to be taken positive. Therefore,

=My Tom—im+Bm, = -Lm+ 2y

2 2
The values a, and b, satisfy the equations

AT EY

—1\\—1
0 - &\ = (-1, ab =]
Using these equations and the formulas (51) and (52), the relations
T2 = —E, TBTg+1 + TR + 1Ty = E, (56)
a=12...n—-1
TT = —T.T B=12...n—-2
yis = o Taly vy=212...n—-3
d=vy+2

follow easily and this implies
(TBT;3+1)3 ==

Putting J = —E, one sees that the matrices J, T,, T,, ... T, satisfy the
relations (I1) which define the group T,.. Therefore they generate a representa-
tion of T, by matrices of rank 2"~V and asJ = —E, thisis a representation
of second the kind. | denote this representation as A, and call it the main
representation of the second kind of the group T,.

47This group is a finite group of the order 2°m*1,
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The fact that the representation A, is irreducible can be seen in this
way: AsT; = iM,, any one of the matricesM1, M, . . . M, can be represented
asalinear homogeneouscombinationof Ty, T, . . . T,—1. If thegroup generated
by the T, was reducible, the group generated by the M, would also be
reducible. However, as we have seen, this is not the case.

Equations (56) give riseto the following consideration. Only using these
equations, one can represent any product T, TRT, --- asalinear homogeneous
combination of the 2"~* special products

E Ty oo Toon TaTa TaTa oo TaooToog, TiToTa, oo TiTo e Tos
(57)

where the coefficients can only beintegers. Moreover, there cannot be derived
alinear homogeneous rel ation with constant coefficients between the products
(57) from equations (56). Actually, these equations can be satisfied by the
matrices (55). Among thelinear combinations of the products of these matrices
are, as we have aready seen, the M, and therefore also the 22™ linearly
independent matrices (54). For odd n, 22™ = 2"~1 and the 2" * products (57)
cannot be linearly dependent in this case. For even n, however, add another
T,tothe Ty, T, ... T,_1 and add to equations (56) the equations

T% = —E, TooaTn + ToThos = E (58)

Asn + 1lisodd, equations (56) and (58) do not imply alinear homogeneous
relation between the 2" products

E Ty .o Taog, oo, TaTg, oo TrooThog, TiToTg, oo Ty, o0 Ty

and therefore no relation between the products (57) can be derived.
Denoting the products (57) as

A]_, Az, R A2”*1
we find that (56) yields equations of the kind
on—1
AT, = 3 tWA
A=1
where the t{§ denote certain integers. The matrices
T. = W)

of rank 2"~* obviously generate a group isomorphic (in the first degree) with
the group T,
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The group T, can be represented as a linear homogeneous group of
rank 2"~ with integer coefficients.

Paragraph 23. In the following, | will calculate the (smple) character
x(T) belonging to the representation A,,, which | call the main character of
second kind.

| start with this statement: Let X be a matrix of the form xE + X x,P,,
where the P, are products of k certain matrices of the set My, My, ..., Mo,
Similarly, let Y = yE + X y3Qg, where the Qg denote products of all other
matrices of this set. Here none of the products P, and Q; may equal *=E.
Then all the products P,Qg are distinct from =E. Therefore, according to
Paragraph 21, the traces of all the matrices P,, Qg, P,Qg equal zero. Asthe
trace of the identity matrix E of rank 2™ equals 2™, it follows that the traces
of the matrices X, Y, XY take the values 2™x, 2™y, 2™xy.

Next, let P be a permutation (of second kind), consisting of ¢ cycles,
of the form

(L2 . AN+ A +2 NN (59)
where we assume that \; = \, = ---. To this permutation of S, there
corresponds in T, the element

P"=C,.C,...
where
Cy =TTy Ty Cy, = Thuu-1Tange—2 - Ty - -

and, if A, = 1, C,  denotestheidentity E of T,. The matricesof A, correspond-
ing to the elements P” and C, | of T, shall be designated with the same | etters.
For odd n, i.e, n = 2m + 1, My, appears in none of the matrices in (55)
and can be neglected if the C, are expressed in terms of the M,. However,
if n=2m + 2, My,,; appears only in T,,_; and has to be considered only
if P denotes the cycle (1, 2, ... n), i.e,

P =Ty 1Tho Ty
Moreover, C,, can be expressed by the products of the matrices
My, My, ... My,—1
and similarly, C,, by the products of the matrices
Myp, My, -+ Myginp 1

and so on. In light of the statement made before, one can see that if the trace
of C,, equals 2™c,, the trace of P’ takes the value 2"c,c; ---.
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We therefore only have to calculate the trace of one element of the kind
C=TTg 1 Tpu
It follows that
C = (ag-1Mp—1 + bgMp)(@8g_2Mp_5 + bg_1Mp_1)
X o (8g—a-1Mp-a-1 T Bg-aMg-4)

Since we are only interested in the trace of C, doing the multiplication, one
has to consider solely those factors which have the form cE. For an even
number a + 1 of factors T, of C, the required form has only this one part

8-1D5-1MF-1 - 85-sbp-sMG5 - Bp-ubg- oMo
As

(-1
2

M2 = (=M 1E, ab, =
the trace of C equals 2™ (*92. However, if « + 1 is odd, the trace of C
equals zero with the only exception if n = 2m + 2 and

C=Tp1Tp1 " Ty
= (@mMam + Bom+1Mom+1)(@om-1Mom-1 + BomMar)
X o (@ My + b,My) - byM,

In this case, the expansion of C contains the factor

b2m+lM2m+l : b2m'\/|2m b2|V|2 : blMl
which, according to (53), equals

biby -+ bomis - E

This factor has the value

B iz 5 il iJmil i mid

2 /3 22 2/m  Jmr1 2"
Hence, the trace of C equals
im™i/m+ 1= /(-1)"n/2

If all theordershy, N, . . . \, of the cycles of the permutation P examined
earlier are odd, the trace 2™c, of C,_ becomes 2™ (=12 and therefore the
trace x(P') of the matrix P equals
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2m7(>\171)/27>\27127---7>\p712 — 2(2m7n+p)/2 — 2[p*1/2]

On the other hand, if only one of the A, is even, x(P’) becomes zero except
that nisevenand P = (1, 2, ... n). In this casg,

x(P) = V(=12
Using the notation introduced in Paragraph 17, one obtains:

VII. For [a] aclass of similar permutations of S, which can be decom-
posed into o, cycles of odd order, we have for the main character of the
second kind of T, x(T),

Xo = 2212

If nisodd, x(T) is atwo-sided character. However, if nis even, x(T) is not
a two-sided character and we obtain for the class (n) of cycles of nth order

Xm = V(=1)"n/2
For any other class (v), however,

Xw) = 0

Paragraph 24. If nisodd, we also have to determine the simple characters
§(B) and s(B) of B, belonging to x(T), as x(T) then is atwo-sided character.
According to the above, it is sufficient to determine the complement 8(B) =
B(B) — ¥(B) of x(T).

In order to solve this problem, one has to keep in mind that, if n =
2m + 1, the the matrix M,,+1 does not contain the elements Ty, Ty, ... Tr—1
of our representation A,,. As

Mom+ 1My = =M\ Mg
it follows that
Mo ThiMomer = =Ty,

Furthermore, M%,,,, = E and this implies that M,,,, plays the same role in
our representation A, as the matrix H in the two-sided representation of
Paragraph 16. In order to determine 3(B), one therefore has to calculate the
trace of the matrix M,,.4 P' only for the even P. Again, we can restrict
ourselves to permutations P of the form (59).

As, according to equations (51)—(53),

Momi1 = £EMiM; -+ Moy,

the trace of a product
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Mzm+1MMg -+

is always zero, with «, B, ... being any indices of the series 1, 2, ... 2m
whose number is smaller than 2m. This implies immediately that the trace
of Myy,+1P’" equals zero if Pisnot (1, 2, ... n). Again, in this case, however,

P'=TyaTh2 Ty
= (qzm-1Mam-1 + BoanMam)(@2m-2Mam-2 + Bam—1Mam-1)
X - (yMy + b,My) - by My
and the trace 3(P’) of M,,.1P’ equals the trace of
Mami1 * BomMam * Bom-1Mam-1 === baMz - byMy = byby -+ borE

2™y, - by = iMy/2m + 1 = /(—1)"D2n



