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In the present work, I deal with the task of determining all finite groups
of fractional linear substitutions that are isomorphic2 to the symmetric or
alternating group of n numbers in the first degree. This task is carried out
insofar as an exact outline of the desired collineation groups is gained. In the
following, I call the symmetric group of n numbers Sn , the alternating group An.

It is sufficient to know the irreducible collineation groups; moreover,
one has to consider two equivalent3 groups, i.e., two groups which can be
transformed into each other, as not being distinct.

Among the groups of fractional linear substitutions that are isomorphic
[homomorphic; Translator] to Sn or An , those play a special role which can
be written as groups of n! and n!/2 complete homogeneous linear substitutions.

1 The present text is a translation of Schur, I. (1911). Über die Darstellung der symmetrischen
und der alternierenden Gruppen durch gebrochene lineare substitutionen, Journal für die reine
und angewandte Mathematik, 139, 155–250. Translated by Marc-Felix Otto. Published with
the permission of Journal für die reine und angewandte Mathematik.

2 In some places, but not all, “isomorphic” must be read as “homomorphic.” Translator.
3 That is, isomorphic. Translator.
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All these groups have already been determined by Mr. Frobenius4 by calculat-
ing the characters of the groups Sn and An.5 I will show a simple method for
the construction of these groups.6

Hence, we only have to deal with those groups in which the use of
fractional linear substitutions is essential. I designate such a group as Sn

(g)

or An
(g), depending on whether it is isomorphic [homomorphic; Translator]

to Sn or An; correspondingly, I designate groups isomorphic [homomorphic;
Translator] to Sn and An in which the fractional linear substitutions can be
replaced by homogeneous linear substitutions as Sn

(h) and An
(h).

If n , 4, there exist no groups Sn
(g) and An

(g) at all. But if n $ 4, the
number of distinct (nonequivalent) irreducible groups Sn

(g) equals the number
vn of decompositions

n 5 n1 1 n2 1 . . . 1 nm (n1 . n2 . . . . . nm . 0) (1)

of n into different integer summands, namely a decomposition (1) corresponds
to an irreducible group Sn

(g) of the order

fn1,n2,...,nm 5 2[n2m/2] n!
n1.n2. ??? n3.

&
a.b

na 2 nb

na 1 nb

as I will show in the following.
Here I designate as the order of a group of fractional linear substitutions

the number of variables reduced by 1, i.e., the number of variables in the
corresponding homogeneous linear substitutions. For the decomposition n 5
n, one has fn 5 2[n21/2]. If n 5 6, the two groups of order f6 5 4 and f3,2,1 5
4 are to be considered not distinct from each other.

Mr. A. Wiman has already indicated the very interesting group of order
2[n21/2] in his important work, Ueber die Darstellung der symmetrischen und
alternirenden Vertauschungsgruppen als Collineationsgruppen von moeglichst
geringer Dimensionszahl,7 though without specifying how this group can be
composed for an arbitrary n. In Part VI, I specify a relatively easy method
for the construction of this goup.

Regarding the alternating group, one has to consider the following: The
group An has an External automorphism A 5 (P

P8), where P8 follows from P
by a permutation of certain numbers in the cycles of the permutation P, e.g., of

4 Ueber die Charaktere der symmetrischen Gruppe, Sitzungsber. K. Preuss. Akad. Berlin (1900),
p. 516; Ueber die Charaktere der alternierenden Gruppe, ibid. (1903), p. 328. I have obtained
the characters of the symmetric group in another way in my dissertation, Ueber eine Klasse
von Matrizen, die sich einer gegebenen Matrix zuordnen lassen (Berlin, 1901).

5 Paragraph 42 of this work shows an abstract of Frobenius’ results.
6 Ueber die Darstellung der symmetrischen Gruppe durch lineare homogene Substitutionen,
Sitzungsber. K. Preuss. Akad. Berlin (1908), p. 664.

7 Math. Annalen 52, 243.
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the numbers 1 and 2. Hence one gains from every isomorphic [homomorphic;
Translator] collineation group K a second group K 8 of the same kind by
substituting for the collineation of K which belongs to P the one that belongs
to P8 for any P. In the following, I call K and K 8 adjunct groups.

If one considers two adjunct groups as not different even if they are not
equivalent to each other, then the number of different irreducible groups An

(g)

for n 5 4 becomes 1 and for n . 4, as for the symmetric group, vn. The
irreducible group An

(g) corresponding to the decomposition (1) equals
fn1,n2,. . .nn if n 2 m is odd and 1–2 fn1,n2,...nm if n 2 m is even. However, those
general rules undergo an exception in the two cases where n 5 6 and n 5
7. For n 5 6, among the v6 5 4 mentioned groups A6

(g), whose orders equal
4, 4, 8, 20, one has to consider the two groups of order 4, as in the group
s6, to be identical; though apart from the remaining three groups, there are
six other essentially different8 irreducible groups A6

(g) of the orders 3, 6, 6,
9, 12, 15. For n 5 7, there are added to the v7 5 5 groups A7

(g) corresponding
to the general case 11 other irreducible groups of the orders 6, 6, 15, 15, 21,
21, 24, 24, 24, 24, 36.

Every group Sn
(g) and An

(g) can be written as a group of 2n! and 2n!/2
homogeneous linear substitutions, respectively. This rule only fails with the
alternating groups A6 and A7; here the minimal number of homogeneous
linear substitutions by which a group An

(g) (n 5 6, 7) can be written can also
be 3n!/2 or 6n!/2. This explains the exceptional status of the groups A6

(g)

and A7
(g).

Of special interest is the existence of two essentially different groups
A7

(g) of the order 6 to which is added a group A7
(g) of the same order. The

two groups A7
(g) can be distinguished in the first place in that the one can

be written as a group of 3(7!/2) homogeneous linear substitutions, the other
as a group of 6(7!/2). Both these groups have been overlooked by Mr.
Wiman,9 in the examination of the collineation groups of order 6 isomorphic
[homomorphic; Translator] with A7.

Until now, of the groups Sn
(g) and An

(g) named above, only the binary,
ternary, and quaternary groups have been known, except the group Sn

(g) of
the order 2[n21/2] and the corresponding group An

(g) of the order 2[n22/2]

mentioned in the work by Mr. Wiman. The binary groups A4
(g), S4

(g), and
A5

(g) are first found in a geometrical outfit in the work by Mr. H. A. Schwarz,
Ueber diejeniger Faelle, in welchen die Gaussische hypergeometrische Reihe
eine algebraische Funktion ihres vierten Elementes darstellt.10 Independently,
Mr. F. Klein formed these three groups in his work, Ueber binaere Fomen

8 Two groups with conjugated complex coefficients are considered not distinct. J. Mathematik
139, 2.

9 Ibid., pp. 259 ff.
10 J. Reine Angew. Math. 75, 292.
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mit linearen Transformationen in sich selbst,11 and also proved that these are
the only finite binary substitution groups, disregarding two trivial cases. The
existence of a ternary group A6

(g) was first shown by Mr. Wiman12 by proving
that a ternary collineation group already mentioned by Mr. Valentiner13 is
isomorphic [homomorphic Translator] to the group A6. Among the (irreduc-
ible) quaternary collineation groups, there is one of each group S4

(g), S6
(g),

A6
(g), A7

(g) and two of the groups S5
(g) and A5

(g). The groups S6
(g) and A7

(g)

were first discovered by Mr. F. Klein14 by considerations of linear geometry;
each of these groups contains the group A6

(g) and one of the groups S5
(g)

and A5
(g) as subgroups. The enumeration of all the ternary and quaternary

collineation groups which are ismorphic to a symmetric or alternating group
has been done by Mr. H. Maschke.15

In the following, I use the methods that I explained in my work, Ueber
die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutio-
nen.16 To get an exact survey of all the groups Sn

(g) and An
(g), one only has

to establish the representation groups of Sn and An and calculate the Frobenius
characters of these groups.

If n . 4, the group Sn possesses two representation groups Tn and T 8n
of the same order 2n! that are only isomorphic [homomorphic; Translator]
to each other for n 5 6. Each of these groups has an invariant subgroup M
of the order 2 which is contained in the commutator of the groups, and the
groups T 8n /M and Tn /M are singly17 isomorphic to the group Sn; Tn and T 8n
differ from each other in that the transpositions of Sn in Tn correspond to
elements of the order 4, while those in T 8n correspond to elements of the
order 2. Both groups can easily be derived from each other; I will only deal
with the group Tn.

The representation group of An is clearly distinguished. If n $ 4, but
not 6 or 7, then this is a group Bn of the order 2(n!/2) which is contained as
a subgroup in each of the groups Tn and T 8n. In contrast, the representation
groups of A6 and A7 are of the order 6(6!/2) and 6(7!/2).

The determination of the representation groups of Sn and An is relatively
easy if one uses a theorem on the definition of Sn and An as abstract finite
groups by Mr. E. H. Moore, which plays an important role in the mentioned

11 Math. Annalen 9, 183.
12 Math. Annalen 47, 531.
13 Vidensk. Sels. Skrifter, 6. Raekke (Copenhagen, 1889), p. 64.
14 Math. Annalen 28, 499.
15 Math. Annalen 51, 251.
16 J. Reine Angew. Math. 127, 20. Also compare to my work, Untersuchungen ueber die

Darstellung der endlichen Gruppen durch gebrochene linear Substitutionen, Ibid., 132, 85.
In the following, I cite the first work by D., the second one by U.

17 In the original, em einstufig. Translator.
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works by Mr. Wiman and H. Maschke, too.18 The calculation of the characters
of these representation groups is much harder; this required an intense study
of the group Tn which on the one hand is closely related to the symmetric
group, but on the other hand has a much more complicated structure. Finally,
I can solve this problem by introducing a class of symmetric functions that
are interesting themselves (Chapter IX).

1. THE REPRESENTATION GROUPS OF THE GROUPS Sn

AND An

Paragraph 1. To facilitate the understanding of the following, I start
with some remarks on the notions which I use.19

Let H be a finite group of the order h. If one assigns to the elements
A, B, . . . of H the h linear substitutions (collineations) of nonvanishing
determinants

xm 5
am,1 y1 1 ??? 1 am,m21 ym21 1 am,m

am,1 y1 1 ??? 1 am,m21 ym21 1 am,m

xm 5
bm,1 y1 1 ??? 1 bm,m21 ym21 1 bm,m

bm,1 y1 1 ??? 1 bm,m21 ym21 1 bm,m

then these substitutions form a representation (of the order m) of H if the
product AB equals the substitution AB, which corresponds to the product AB
of the elements A and B, with each two elements A, B of the group. Here,
the h substitutions A, B, . . . do not need to differ from each other. If one
denotes the coefficient matrices (alm), (blm), . . . with (A), (B), . . . , then
the equation

(A)(B) 5 rA,B(AB) (2)

holds with each two elements A, B of the group, where rA,B is a certain constant.
In the reverse case, a representation of H of fractional linear substitutions
corresponds to each system of h matrices (A), (B),. . . , whose determinants
are not zero and which have the property that with each two elements A, B
of H there exists an equation of the form (2).

Each matrix (A), (B), . . . which corresponds to the substitutions A, B,
. . . is only determined up to a constant. If these factors can be chosen such
that the numbers rA,B all become equal to one, then the matrices (A), (B), . . .

18 3Mr. de Seguier, Co. R. Acad. Scie. Paris (1910), 150, 599 has determined the representation
groups of Sn and An in another way. However, in the alternating group, Mr. de Seguier missed
the important exception n 5 7.

19 Compare D., Introduction.
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themselves form a representation of the group H which can also be interpreted
as a representation of H by the even homogeneous linear substitutions

(A) xm 5 am1 y1 1 am2 y2 1 ??? 1 amm ym

(B) xm 5 bm1 y1 1 bm2 y2 1 ??? 1 bmm ym

(m 5 1,2, . . . , m)

Two representations of a group by whole or fractional linear substitutions
are equivalent if one representation can be transformed into the other by a
whole or fractional linear transformation of the variables of a nonvanishing
determinant. Moreover, a representation of mth order by whole or fractional
linear substitutions is called irreducible if for none of its equivalent representa-
tions there can be found a number k , m such that among the coefficients
alm,blm, . . . of its substitutions, those become equal to zero at which l # k
and m . k or l . k and m # k.

A finite group K which contains a subgroup M consisting of invariant
elements of K such that the group K/M is isomorphic to the group H in the
first degree will be denoted as a group of H completed by the group M. If
K 5 MA8 1 MB8 1 . . . , the element A of H shall correspond to the complex
MA8, the element B to the complex B8, etc. Furthermore, one has an arbitrary
representation D8 of the group K by homogeneous linear substitutions (matri-
ces) such that to each element of the subgroup M there corresponds a matrix
which only differs by a constant factor from the identity matrix.20 If in this
representation the matrices (A), (B), . . . are assigned to the elements A8, B8,
. . . , then there exist equations of the form (2) for these matrices. Hence to
each such representation D8 of K by homogeneous linear substitutions there
belongs a representation D of the group H by fractional linear substitutions.

The group K can always be chosen such that by this each representation
of H can be established by fractional linear substitutions. A group K which
has this property will be called a sufficiently completed group of H. If the
order of such a group becomes the smallest possible, then I denote it as a
representation group of H. Hence, if one knows a representation group K of
H, one can get all the irreducible representations of K by fractional linear
substitutions by determining all the irreducible representations of K by homog-
enous linear substitutions.

A sufficiently completed group K of H is a representation group exactly
if the commutator of K contains all the elements of the subgroup M. Moreover,
the commutator of each representation group, being an abstract group, is
readily determined by the group H. The same is valid for the subgroup M,
which I denote as the multiplicator of the group H. A group H whose
multiplicator is of order one will be called a closed group.

20 This condition is automatically satisfied with an irreducible representation.
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Paragraph 2. The symmetric group Sn can be generated by the n 2
1 transpositions

S1 5 (1,2), S2 5 (2,3), . . . , Sn21 5 (n 2 1, n)

These transpositions satisfy the equations

S2
a 5 E, (SbS3

b21) 5 E, SgSd 5 SdSg (I)

and we have the following theorem as shown by Mr. E. H. Moore21:
If one considers equations (I) as a system of defining relations between

the n 2 1 generating elements S1, S2, . . . Sn21, then the abstract group defined
thereby is finite and isomorphic to the group Sn in the first degree.

Let us now consider any representation of the group Sn by collineations.
A collineation with the coefficient matrix Aa will correspond to the transposi-
tion Sa; then Aa is only determined up to a constant factor. From the relations
(I) there follow equations for Aa of the form

A2
a 5 aaE (3)

(AbA3
b21) 5 bbE (4)

AgAd 5 cgdAdAg (5)

where E is the identity matrix and aa, bb, and cgd are certain nonzero constants.
The numbers cgd only appear for n . 3 and stay unchanged if the matrices
Aa are multiplied with arbitrary constants and are therefore determined by
the considered collineations alone.

It follows from (5) that

AgAdAg21 5 cgdAd

Squaring on both sides yields, with (3),

c2
gd 5 1 (6)

Now, in Sg 5 (g, g 1 1), Sd 5 (d, d 1 1) the figures g, g 1 1, d, d 1 1
differ because d8 $ g8 1 2. For two more indices g8 and d8 and d8 $ g8 1
2, one can specify a permutation in Sn which transports the indices g, g 1
1, d, d 1 1 to the indices g8, g8 1 1, d8, d8 1 1. Then,

S21SgS 5 Sg8, S21SdS 5 Sd8

Correspondingly, if there is assigned a collineation with a coefficient matrix
A to the permutation S, in our representation,

21 Proc. Lond. Math. Soc. (1897), 28, 357.
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A21AgA 5 cAg8, A21AdA 5 dAd8

where c and d are certain nonzero constants. Equation (5) now yields

A21AgAA21AdA 5 cgdA21AdAA21AgA

and

cd ? Ag8Ad8 5 cdcgdAd8Ag8 5 cdcg8d8Ad8Ag8

Hence, cgd 5 cg8d8, i.e., all the numbers cgd are the same. If we put

cgd 5 j

then, with (6),

j 5 61 (7)

Moreover, from equations (4)

AbAb11Ab 5 bA21
b11Ab21A21

b11

Squaring yields readily

b2
b 5 a2

ba2
b11 (8)

As we may now multiply the matrices Aa with arbitrary constants, we can
fix the numbers aa arbitrarily. First put

a1 5 a2 5 . . . 5 an21 5 j

Then, from (7) and (8), bb 5 61, and if the matrices B1, B2, . . . Bn21 are
defined by the equations

B1 5 A1, B2 5 jb1A2, B3 5 b1b2 A3, B4 5 jb1b2b3 A4, . . .

they satisfy the relations

B2
a 5 jE, (BbBb11)3 5 jE, BgBd 5 jBdBg

On the other hand, if one puts

a1 5 a2 5 . . . 5 an11 5 1
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and

C1 5 A1, C2 5 b1A1, C3 5 b1b2 A3, C4 5 b1b2b3 A4, . . .

then it follows that

C 2
a 5 E, (CbCb11)3 5 jE, CgCd 5 jCdCg

Now, if j 5 1, the relations (I) are satisfied if one substitutes Ba 5 Ca for
Sa. Moore’s theorem yields that for j 5 1, the fractional linear substitutions
can be replaced by homogenous linear substitutions in our representation.
However, this is certainly not the case if j 5 21. For n , 4, the latter option
is not to be considered at all.

Paragraph 3. Now it is easy to determine the representation groups on
Sn. We denote with Tn the finite abstract group which is determined by the
system of the defining relations

J 2 5 E, T 2
a 5 J, (TbTb11)3 5 J, TgTd 5 JTdTg (II)

of the generating elements J, T1, T2, . . . Tn21. In the same way, Tn8 is the
group defined by the relations

J 2 5 E, T 82
a 5 J, (T 8bT 8b11)3 5 J,

(II8)
T 8gT 8d 5 JT 8dT 8g, JT 8a 5 T 8aJ

of the generating elements J, T 81, T 82, . . . , T 8n. J is contained as invariant
element in both groups Tn and T 8n, and if one introduces the group

M 5 E 1 J

the groups Tn /M and T 8n /M become isomorphic [homomorphic; Translator]
in the first degree to the group Sn , which can be obtained by comparing
formulas (II2) and (II8) with (I). The groups Tn and T 8n thus appear as two
groups of Sn completed by the group M. Next, the equations (II) are satisfied
if one substitutes for the element J the matrix jE and for the elements Ta the
matrices Ba; also the equations (II8) are satisfied if one substitutes for the
elements J and T 8a the matrices jE and Ca. Hence, each representation of the
group Sn by fractional linear substitutions yields as well a representation of
the group Tn as a representation of the group T 8n by GANZE linear substitu-
tions. It follows that Tn and T 8n are to be denoted as sufficiently completed
groups of Sn. As the element J is contained in the commutator on Tn and
T 8n, for n $ 4,



422 Schur

J 5 T1T3T 21
1 T 21

3 , J 5 T 81T 83T 821
1 T 821

3

the groups Tn and T 8n are representation groups for n $ 4; the multiplicator
of the group Sn is of the order 2 if n $ 4.22

One has to consider that the commutator of Sn is the alternating group
An. As the index of this subgroup equals 2, i.e. (if n $ 4), equals the order
of the multiplicator of Sn , it follows that the group Sn can have maximally
two representation groups not isomorphic [homomorphic; Translator] to each
other. However, if one uses this procedure in the general case of a finite
group, e.g., to get a second representation group of Sn from Tn , one is
automatically led to the group T 8n. Then, if n 5 6, Sn is a complete group,23

hence the groups Tn and T 8n are not isomorphic [homomorphic, Translator]
to each other for n 5 6.24 These two groups differ from each other in that
the elements of Tn corresponding to the tranpositions of Sn are of the order
4, while those of T 8n are of the order 2. This also implies that T6 and T 86 are
isomorphic [homomorphic, Translator] groups. This is because the group Sn

has an outer automorphism which assigns to each transposition a permutation
of the form (ab)(gd )(eh). In T6, the elements corresponding to these permuta-
tions are of the order 2, which can be seen from the elements T1T3T5 and
JT1T3T5 belonging to the permutation (12) (34) (56).25

We can formulate the following theorem:
I. The groups S2 and S3 are compact groups. However, if n . 3, the

group S8n possesses two representation groups Tn and T 8n, each of the order
2(n!), which can be defined as abstract groups by the relations (II) and (II8)
and Tn and T 8n are isomorphic groups only if n 5 6.

Paragraph 4. Now I consider the alternating group An. This group is
generated by the n 2 2 permutations

A1 5 S2S1 5 (123), A2 5 S3S1 5 (12)(34), . . . ,

An22 5 Sn21S1 5 (12)(n21, n)

which satisfy the equations

22 It should also be proved that j 5 E cannot follow from the relation (II) or (II8). This follows
from the fact that these relations can be satisfied by matrices such that E and J are replaced
by two different matrices, as we will see in Chapter IV.

23 Compare to O. Hoelder, Bildung zusammengesetzter Gruppen, Math. Ann. 46, 321.
24 Compare to U., p. 122.
25 It can be seen directly that T6 and T 86 are isomorphic by showing that the elements T1 5

T 81T 83T 85, T2 5 T 83T 82T 81T 84T 83T 82T 85T 84T 83, T3 5 T 81T 84T 83T 85T 84, T4 5 T 81T 82T 81T 83T 82T 81T 85, T5 5
T 81T 83T 84T 83T 85T 84T 83 of T86 satisfy the relations defining T6.
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(III)

Again, the group An is clearly defined as an abstract group by these relations.26

Let there be given an arbitrary representation of An by collineations. If a
collineation with the coefficient matrix Pn corresponds to a permutation An ,
then Pn is only determined up to a constant factor and with (III) there exist
equations of the form

P3
1 5 a1 E, (P1P2)3 5 b1 E, (P1Pl) 5 clE (9)

P2
a 5 aaE, (PbPb11)3 5 bbE, PlPd 5 cldPdPl (10)

Equations (10) are completely analogous to equations (3)–(5) of Paragraph
2. We conclude like above, that

cgd 5 c24 5 61, b2
b 5 a3

ba3
b11 (11)

Moreover, from (9),

(P2P1
2)3 5 (a2a1P2

21P1
21)3 5 a2

3a1
3b1

21E

and

P1P2P1 5 b1P2
21P1

21P2
21 5 b1a2

21P2
21P1

21P2

The last equation yields, raised to the third power,

P1P2P2
1P2P2

1P2P1 5 P1(P2P2
1)3P21

1 5 b3
1a23

2 (P21
2 P21

1 P2)3

Hence,

a3
2a3

1b21
1 5 b3

1a23
2 a21

1 , i.e., b4
1 5 a4

1a6
2

Putting

b2
1

a2
1a3

2
(12)

then j 5 61. From (P1Pl)2 5 clE, one also gets

PlP1Pl 5 alP21
l P1Pl 5 clP21

1

and, raising to the third power,

26 E. H. Moore, op cit. The group An can be defined more elegantly by the relations

C3
a 5 E, (CaCb)2 5 E (a, b 5 1, 2, . . . n 2 2, b . a)

which can be show using Moore’s theorem. But this definition of An is not so useful in this case.
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a3
l a1 5 c3

l a21
1 , i.e., c3

l 5 a2
1a3

l (13)

For n $ 6 and

k
a3c4

c3a4

(13) yields

k3 5 j 5 61

Moreover, from the equations

(P1P4)2 5 c4 E, P2P4 5 c4
2P4P2

one readily obtains the equation

P4P1P2 5 c4c4
2P21

1 P2P21
4

or

P4P1P2P21
4 5 c4a2a21

4 c4
2P21

1 P21
2

This implies, by raising both sides to the third power,

b1 5 c3
4a3

2a23
4 c3

24b21
1

Considering equations (11)–(13) one concludes that c24 5 j; therefore,
generally,

cld 5 j

For n $ 7, also consider the equations

(P1Pm)2 5 cm, P3Pm 5 jPmP3 (m $ 5)

These yield

P3P1Pm 5 c3P21
1 P21

3 Pm 5 jc3P21
1 PmP21

3

i.e.,

P3P1PmP21
3 5 jc3ama21

3 P21
1 P21

m

Raising both sides to the second power, one obtains

cm 5 c2
3a2

ma22
3 c21

m

i.e.,

c2
ma22

m 5 c2
3a22

3

On the other hand, it follows from (13) that
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c3
ma23

m 5 c3
3a23

3

and hence

c3

a3
5

c5

a5
5

c6

a6
5 . . . 5

cn22

an22

Also, if n . 7,

c4

a4
5

c6

a6
5

c7

a7
5 . . . 5

cn22

an22

Therefore, if n . 7,

c3

a3
5

c4

a4
5

c5

a5
5 . . . 5

cn22

an22

In particular, if n . 7,

k 5 j 5 61

One sees easily that the hereby introduced quantities j and k, which are
connected by the equation k3 5 j, stay unchanged if the matrices P1, P2, . . .
Pn22 are multiplied with arbitrary constants; they are determined only by the
collineations to be considered. The quantity k appears only for n . 5 and
equals j for n . 7. Hence, only for n 1 6 and n 1 7 has k an essential
meaning. Later, we will see that there are representations of the groups A6

and A7 at which k becomes a primitive sixth root of the identity.
In order to get easier formulas, we put for n 5 4

Q1 5 !3 i
ai

P1, Q2 5 j
a1a2

b1
P2

Then,

Q3
1 5 jE, (Q1Q2)3 5 jE (14)

For n . 4, we put

Q1 5 j
c

a1a3
P1; Q2 5 j

a1a2

b1
P2; Q3 5

1
a1

b1

B2
a3P3, . . .

and, generally,

Q2n 5 j
a1

b1

b2b4 ??? b2n22

b3b5 ??? b2n21
a2nP2n, Q2n11 5

1
a1

b1b3 ??? b2n21

b2b4 ??? b2n
a2n11P2n11

A simple calculation yields for n 5 5



426 Schur

Q3
1 5 Q2

2 5 Q2
3 5 (Q1Q2)3 5 (Q1Q3)2 5 (Q2Q3)3 5 jE (15)

for n 5 6

Q3
1 5 Q2

2 5 Q2
3 5 Q2

4 5 (Q1Q2)3 5 (Q1Q3)2 (16)

5 (Q2Q3)3 5 (Q3Q4)3 5 jE(Q1Q4)2 5 kE; Q2Q4 5 jQ4Q2

for n 5 7

Q3
1 5 Q2

a 5 (Q1Q2)3 5 (Q1Q3)2

5 (Q1Q5)2 5 (QbQb11)3 5 jE(Q1Q4)2 5 kE

QgQd 5 jQdQg

a 5 2, 3, 4, 5; b 5 2, 3, 4; g 5 2, 3; d $ g 1 2 (17)

and for n . 7

Q3
1 5 jE; (Q1Q2)3 5 jE; (Q1Ql)2 5 jE

Q2
a 5 jE; (QbQb11)3 5 jE

QgQd 5 jQdQg (18)

The indices a, b, g, d, l in equations (18) fulfill the same conditions as in
equations (III).

Paragraph 5. Now, we can easily determine the representation group
of An.27 Consider the representation group Tn of Sn. The (MEHRSTUFIG)
isomorphism between Sn and Tn corresponds to the subgroup An of the order
n!/2 of Sn , a subgroup Bn of the order 2n!/2 of Tn. This group Bn can be
generated by the elements

B1 5 T2T1, B2 5 T3T1, B3 5 T4T1, . . . , Bn22 5 Tn21T1

and from the relations (II), it immediately follows that these elements satisfy
equations analogous to equations (III):

B3
1 5 J; (B1B2)3 5 J; (B1Bl)2 5 J; B2

a 5 J (IV)

(BbBb11)3 5 J; BgBd 5 JBdBg

These equations also clearly define the group Bn as an abstract group. It
readily follows from (IV) that J commutes with the elements B1, B2, . . . Bn22

and has the order 2.

27 Theorem II of my work U. yields that the group An , which is a simple group if n , 4, only
has one representation group.
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The group Bn is a group of An completed by the group M 5 E 1 J and
it can be easily seen that the commutator of Bn contains the element J if n $
4.28 If n is greater than 3, but not 6 or 7, the formulas (14), (15), and (18)
indicate that equations (IV) are satisfied if one substitutes for the elements
J and Bn the matrices jE and Qn. From this it follows that, similarly as in
Paragraph 3 with the group Sn , the group Bn is the representation group of
An if n $ 4 and n 5 6 or 7.

However, equations (16) and (17) imply that the representation groups
of A6 and A7 are certain groups of orders 6(6!/2) and 6(7!/2), also considering
the equation k3 5 j 5 61. I will explore these groups more deeply in
Chapter XI.

The two cases where n 5 2 and n 5 3, not considered so far, are of no
interest for us. That is because A2 has the order 1 and A3 is cyclic and
therefore a compact group. Defining the group Bn , we started with the group
Tn. One is led to the same group if one considers the second representation
group of Sn , T 8n, instead of Tn. This can be seen by showing that the elements
B1 5 JT 82T 81, B2 5 JT 83T 81, . . . , Bn22 5 JT 8n21T 81 of T 8n satisfy the relations
(IV).

If n $ 4, the group Bn can be characterized in another way, too. Namely,
considering that the commutator of Sn is the group An and that the commutator
of Tn (or T 8n) contains the element J, it follows, that the group Bn is nothing
but the commutator of Tn (or T 8n). Hence, we can formulate the following
theorem:

II. The representation group of the alternating group An is, if n is greater
than 3 and not 6 or 7, a group with the order 2(n!/2) which is isomorphic in
the first degree to the commutator of any representation group of the symmet-
ric group Sn. On the other hand, the representation groups of the groups A6

and A7 are of orders 6(6!/2) and 6(7!/2), respectively.

In the discussion of the representations of the group Sn by collineations,
it is of no interest which one of the two representation groups is chosen. If
in the following the group Tn is considered primarily, this has the following
reason: The elements A2, A3, . . . An22 of the group An generate a group which
is isomorphic to the group Sn22. Analogously, the elements B2, B3, . . . Bn22

of Bn generate a group of Sn22 completed by the group M. However, equations
(IV) show that this group is isomorphic to the group Tn22 and not to the
group T 8n22.

28 This follows from the equation B21
1 B2B1 ? B2 5 JB2 ? B21

1 B2B1.
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2. ON THE CLASSIFICATION OF THE ELEMENTS OF THE
GROUPS Tn AND Bn INTO CLASSES OF CONJUGATED
ELEMENTS

Paragraph 6. If the permutation P of the group Sn equals the product

SaSbSg . . .

of the transpositions S1 5 (12), S2 5 (23), . . . , Sn21 5 (n 2 1, n), then the
two elements

TaTbTg . . .

and

JTaTbTg . . .

in the group Tn correspond to this permutation. We designate one of these
elements by P8, the other JP8. For any permutation P of Sn , we have unique
fixed element P8 of Tn. Hence, the n! elements P8 of Tn generate a complete
remainder system of Tn mod M and, if the equation PQ 5 R is satisfied for
three permutations P, Q, and R, P8 Q8 equals either R8 or JR8. For two
commuting (similar) permutations A and B, A8 B8 equals either B8 A8 or JB8
A8. Furthermore, if P and Q are two conjugated permutations, the element
P8 in Tn is conjugated to at least one of the elements Q8 or JQ8.

I designate a permutation P as a permutation of the first or second kind
depending on whether P8 and JP8 are conjugated elements of Tn or not. Two
similar permutations belong to the same kind.

Now, let

P, P1, P2, . . . Ph21

be the complete permutations similar to the given permutation P. If P is of
the first kind, the 2h elements

P8, JP8, P81, JP81, . . . P8h21, JP8h21

generate one class of conjugated elements of Tn. However, if P is of the
second kind, these 2h elements are distributed in two classes, each consisting
of h elements; here, one class turns into the other one by multiplying each
of its elements with J. We can distinguish these two cases in the following
manner, too: In the first case, there is a permutation Q which commutes with
P without Q8 commuting with P8, and the number of elements of Tn which
commute with P8 equals the number n!/h of permutations of Sn commuting
with P. In the second case, however, for any permutation Q which commutes
with P, Q8 also commutes with P8, and the number of elements of Tn commut-
ing with P8 is two times the number of permutations of Sn commuting with P.
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Now consider two (commuting) permutations A and B of which the first
leaves the numbers m 1 1, m 1 2, . . . , n unchanged, the second, the numbers
1, 2, . . . , m. Then A can be represented as the product of the transpositions

S1, S2, . . . Sm21

and B as the product of the transpositions

Sm11, Sm12, . . . Sn21

However, if l stands for one of the indices 1, 2, . . . , m 2 1 and m for one
of the indices m 1 1, m 1 2, . . . , n 2 1, then

TlTm 5 JTmTl

and it is easily seen that the elements A8 and B8 of Tn do not commute
exactly if the permutations A and B are both odd. With little effort, it can be
concluded generally:

III. If A and B are two permutations of Sn of which the cycles of order
greater than one have no figure in common, then the elements A8 and B8 of
Tn do not commute only if the permutations A and B are both odd; in this
case, A8 B8 5 JB8 A8.

Paragraph 7. With this rule the following can be proved:

IV. An even permutation is of the first kind if it has cycles of an even
order and of the second kind if it only has cycles of an odd order. An odd
permutation is of the first kind if it has at least two cycles of the same order
$1 and of the second kind if all the orders of its cycles are distinct.

To prove this theorem, we have to distinguish four cases.
(a) The permutation P is even and contains a cycle A of even order. If

P 5 AB, then, as P is an even and A an odd permutation, B becomes an odd
permutation. Now, A and B are two odd permutation whose cycles (of an
order greater than 1) have no figure in common. Hence, with III,

A8B8 5 JB8A8

or

A821(A8B8)A8 5 JA8B8

As P8 equals either A8B8 or JA8B8, it follows that A821P8A8 5 JP8; hence P
is a permutation of the first kind.

(b) The permutation P consists of cycles of odd order only. Then the
order a of P is odd. Hence P8a 5 Ja, where a equals zero or one, and (JP8)a

5 JaJa 5 ja11. It follows that the orders of P8 and JP8 are distinct and
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hence P8 and JP8 cannot be conjugated elements, i.e., P is a permutation of
the second kind.

(c) P is an odd permutation which contains two cycles A and B of the
same order $1. For example,

A 5 (a1, a2, . . . am), B 5 (b1, b2, . . . bm)

Putting

C 5 (a1, b1, a2, b2, . . . am , bm)

then C 2 5 AB and P 5 C 2D, where D is the product of the cycles different
from A and B. As P is an odd and C 2 an even permutation, D becomes an
odd permutation whose cycles have no figure in common with the cycles of
the odd permutation C. Therefore we again get D8C8 5 JC8D8 and

C821(C82D8)C8 5 C8D8C8 5 JC82D8

As P8 differs from C82 D8 only by a factor J, it follows that C821P8C8 5
JP8, i.e., P is of the first kind.

(d) The odd permutation P consists of r cycles C1, C2, . . . Cr whose
orders c1, c2, . . . cr , are distinct. Then P 5 C1C2 . . . Cr commutes only with
the c1c2, . . . cr, permutations

Cg1
1 Cg2

2 . . . Cgr
r (gr 5 0, 1, . . . , cr 2 1)

If s denotes the number of odd numbers among c1, c2, . . . cr , then, as P is
an odd permutation, s is odd. Considering the elements C81, C82, C83, . . . C8r of
Tn , then for each two indices r and s

C8rC8s 5 C8sC8r or C8rCs 5 JC8sC8r

namely they obey the following rule: If cr for a fixed r is odd, i.e., the
permutation Cr is even, then each r satisfies the first equation. However, if
cr is an even number and Cr an odd permutation, the second equation holds
only for those s 2 1 number s which are distinct from r and for which the
numbers cs are also even. As s 2 1 is even, one immediately sees that each
element C8s commutes with the product C81, C82, . . . C8r and hence with the
element P8, too, which differs from this product only by a factor J. Hence,
P8 commutes with the 2c1c2 ??? cr elements

JbC8g1
1 C8g2

2 ??? C8g
r (b 5 0, 1; gr 5 0, 1, . . . cr 2 1)

Thus P8 and JP8 cannot be conjugated elements.

Paragraph 8. We can determine the number k8n of classes of conjugate
elements easily now.

I call a decomposition



Representation of the Symmetric and Alternating Groups 431

n 5 n1 1 n2 1 ??? 1 nm (n1 $ n2 $ ??? $ nm)

of the number n in even positive summands an even or an odd decomposition
depending on whether the number of the odd numbers among n1, n2, . . . nm

is even or odd. Furthermore, I denote with kn the number of all decompositions
of n into equal or different summands, gn denoting the number of even and
un the number of odd decompositions of n into distinct summands. Moreover,
I think of vn as the number of decompositions of n into equal or distinct odd
summands. As we know, the number vn also determines the number of
decompositions of n into distinct summands29; hence

vn 5 gn 1 un (19)

Now, the number of classes of conjugated permutations of Sn equals kn. To
a class of permutations of the first kind of Sn there corresponds only one
class of conjugated elements in Tn. However, to each class of permutations
of the second kind of Sn there correspond two classes of conjugated elements
of Tn. As the number of the last mentioned classes of Sn equals vn 1 un

(using Theorem IV), the desired number k8n of classes of Tn becomes

kn 2 vn 2 un 1 2(vn 1 un) 5 kn 1 vn 1 un

Also considering equation (19), this yields

k8n 5 kn 1 gn 1 2un (20)

I also state the following. The numbers kn and vn can be calculated in
a familiar manner using easy recursive equations.30 If one knows vn , however,
gn and un can be derived easily. Namely, putting

dn 5 gn 2 un , d0 5 1

we find that (19) yields

gn 5
1
2

(vn 1 dn), un 5
1
2

(vn 2 dn)

However, if .x. , 1,

o
`

0
dnxn 5 (1 1 x)(1 2 x2)(1 1 x3)(1 2 x4) ???

29 Compare to Bachmann, Analytische Zahlentheorie, p. 30.
30 Compare to Bachmann, ibid., p. 28, 44.
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i.e.,

o
`

0
(21)n dnxn 5 (1 2 x)(1 2 x2)(1 2 x3)(1 2 x4) ???

Using an equation stated by Euler,31

&
`

1
(1 2 xl) 5 o

1`

2`
(2 1)n x(3n21n)/2

this yields that dn 5 0 if n is not of the form (3n2 1 n)/2 and that dn 5
(21)(n2 1 n)/2 if n 5 (3n2 1 n)/2.

Here are some values of gn and un:

g1 5 1, g2 5 0, g3 5 1, g4 5 1, g5 5 1,

g6 5 2, g7 5 2, g8 5 3, g9 5 4, g10 5 5

u1 5 0, u2 5 1, u3 5 1, u4 5 1, u5 5 2,

u6 5 2, u7 5 3, u8 5 3, u9 5 4, u10 5 5

Paragraph 9. Next I consider the subgroup Bn of Tn , which corresponds
to the subgroup An of Sn.

One gets the group Bn by calculating the elements P8 and JP8 of Tn for
all the n!/2 even permutations P. To a class C of h conjugated permutations
of the group An corresponds either only one class of 2h conjugated elements
in the group Bn or two classes of h elements each, where one class can be
turned into the other one by multiplying each of its elements with J. If P is
a permutation of the class C, then the first or the second case appears
depending on whether P8 and JP8 are conjugated elements of Bn or not.

In order to carry out the classification of elements of Bn into classes of
conjugated elements, we have to decide for which of the even permutations
P the elements P8 and JP8 are conjugated with respect to the group Bn. Such
a permutation P is characterized by the fact that one can find an even
permutation Q commuting with P such that P8 and Q8 do not commute but
rather satisfy the equation P8Q8 5 JQ8P8.

If P is a permutation of the second kind (i.e., a permutation of an odd
order), then P8 and JP8 are not even conjugated within Tn , and hence not in
Bn either. Therefore we only have to examine the even permutations of the
first kind, i.e., those even permutations among whose cycles there appear
some of an even order. I will show now:

31 Compare to Bachmann, ibid., p. 24
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V. If P is a permutation of the first kind, then P8 and JP8 are conjugated
elements of Bn always and only if P contains at least two cycles of the same
order m $ 1.

Namely, if A is a cycle of even order of P, then, as we have seen before,
A821P8A8 5 JP8. Moreover, P shall contain two cycles

B 5 (b1, b2, . . . bm), C 5 (g1, g2, . . . gm)

of the same order m $ 1; one of the cycles B and C may equal A. We put

D 5 (b1, g1, b2, g2, . . . bm , gm)

such that D2 5 BC. If P 5 BCF 5 D2F, then F, as P is even, is an even
permutation; according to Theorem III, D8F 8 5 F 8D8 and hence

D821(D82F 8)D8 5 D82F 8

It follows that D821P8D8 5 P8 and therefore

(A8D8)21P8(A8D8) 5 JP8

As A and D are odd permutations, AD is contained in An and A8D8 in Bn.
Hence P8 and JP8 are conjugated in Bn.

Let P be composed of r cycles C1, C2, . . . Cr with distinct orders c1,
c2, . . . cr . Then P commutes only with the c1, c2, . . . cr permutations

Cg1
1 Cg2

2 ??? Cgr
r (gr 5 0, 1, . . . , cr 2 1)

within Sn. Among these permutations, those are even at which the sum of
all gr corresponding to even cr is an even number. As P is an even permutation,
the number s of even numbers among the cr is even. Similarly to case (d)
in Paragraph 7, we conclude that the element P8 commutes or does not
commute with the element C8r or Tn depending on whether cr is odd or even.
This yields that P8 always commutes with the element

C8g1
1 C8g2

2 ??? C8gr
r

if the corresponding permutation Cg1
1 Cg2

2 ??? Cgr
r is even. As a result, there

is no even permutation Q commuting with P such that P8 and Q8 become
noncommuting elements. This implies that P8 and JP8 cannot be conjugated
elements of Bn , q.e.d.

Paragraph 10. In the following it will be shown that, if ln denotes the
number of classes of conjugated elements of the group An , the corresponding
number for the group Bn becomes

l8n 5 ln 1 2gn 1 un (21)

where gn and un have the same meaning as in Paragraph 8.
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Considering a class C of h conjugated even permutations of the group
Sn , one sees that they also build up a class of conjugated elements in the
group An. There appears an exception only if the cycles of each permutation
of C have distinct orders; in this case, the h permutations of C in the group
An can be divided into two classes of 1–2 h conjugated elements each. One class
can be turned into the other one by transforming its elements using an arbitrary
odd permutation.32

If v8n is the number of decompositions of n into distinct summands, the
even permutations of the second kind in the group An are distributed over
vn 1 v8n classes of conjugated elements. To these classes there correspond
exactly 2(vn 1 v8n) classes of conjugated elements in the group Bn. Denoting
with g8n the number of even decompositions of n into distinct summands
(among which may also appear even numbers), one has in An exactly g8n
classes of conjugated permutations belonging to the first kind and whose
cycles have distinct orders. By Theorem V, there correspond exactly 2g8n
classes of conjugated elements in the group Bn to these g8n classes. In contrast,
to each of the remaining ln 2 (vn 1 v8n 1 g8n) classes of An there belongs only
one class within Bn. Hence,

l8n 5 ln 2 (vn 1 v8n 1 g8n) 1 2(vn 1 v8n 1 g8n) 5 ln 1 vn 1 v8n 1 g8n

However, as v8n 1 g8n 5 gn and vn 5 gn 1 un equation (21) follows
immediately.

I will call those even permutations whose cycles have distinct orders
permutations of the third kind. Such a permutation is also of the first kind
if there appear even numbers in the orders of its cycles and of the second
kind if all these orders are odd. There are only two permutations P and Q
of the third kind at which P8 and Q8 are conjugated within Tn , but not within
Bn. Two such elements of Bn will be called conjugated elements. Analogously,
I call two permutations of An that are conjugated within Sn , but not within
An , conjugated permutations.

3. ON THE ASSIGNMENT OF THE ELEMENTS OF THE
GROUPS Sn AND Tn

Paragraph 11. We have not yet made a convention on which of the two
elements of Tn corresponding to a permutation P of Sn shall be designated
as P8. It is essential to fix the name. Hereby, we try to achieve that for each
two permutations P and Q which are conjugated within Sn or An , P8 and Q8
become conjugated elements of Tn or Bn.

32 Compare to Frobenius, Ueber die Charaktere der alternierenden Gruppe, Sitzungsber. K.
Preuss. Akad. Berlin (1901), p. 303.
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A cycle

Cm,n 5 (m, m 1 1, . . . m 1 n 2 1)

of order n can be represented as

Cm,n 5 Sm1n22Sm1n23 ??? Sm

using the transpositions Sa 5 (a, a 1 1). Then, we will define the element

C8m,n 5 Tm1n22Tm1n23 ??? Tm

If n is odd, among the two elements C8m,n and JC8m,n, only one is conjugated
to the special element C81,n within Tn , according to Theorem IV. However, it
is easy to see that this happens with the element C8m,n. Indeed, the two groups
Tn and Tv which are generated by the elements T1, T2, . . . Tn21 and Tm, Tm11,
. . . Tm1n22, respectively, are isomorphic according to the relations (II) that
define the group Tn. Namely, one gets an isomorphism between these groups
by mapping the generating element T11r of Tn to the element Tm1r of Tn.
This implies that C81,n and C8m,n have the same order n8, where n8 is equal to
n or 2n.33 If C81,n and JC8m,n were conjugated elements of Tn , they would be
of the same order, which is not the case as n is odd.

If A is an arbitrary cycle of odd order n, only one of the two elements
of Tn that belong to A is conjugated to the element C81,n. This element I
designate as A8. Moreover, if

P 5 A1 A2 ??? Am

is a permutation whose cycles A1, A2, . . . Am have only odd orders, I put34

P8 5 A81 A82 ??? A8m (22)

Here, the elements A81, A82, . . . A8m, according to Theorem III, commute with
each other because the permutations Am are even. Therefore, the sequence
of the factors A8m in (22) can be changed arbitrarily. The order of the element
P8 is nothing but the smallest divisor of the orders of A81, A82, . . . A8m. One
can see easily that the element to be called Q8 is conjugated to the elements
P8 of Tn or Bn if Q is a permutation conjugated to P within Sn or A8n.

C shall be a cycle with even order which satisfies the condition that it
only contains the numbers m, m 1 1, . . . m 1 n 2 1 (in an arbitrary order).
Then, C can be represented as a product of the transpositions Sm, Sm11, . . .
Sm1n22 like the cycle Cm,n. Therefore, the two elements of Tn belonging to

33 It can be shown that n8 1 n or n8 1 2n, depending on whether (21)(n221)/8 equals 1 or 21.
If n is even, the order of C8m,n becomes n if n 5 8l or n 5 8l 1 6, but 2n if n 5 8l 1 2
or n 5 8l 1 4.

34 If P 5 E, I also put P8 5 E, of course.
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C are contained in the already considered group Tn. According to Theorem
IV, there is only one of these two elements conjugated to the element C8m,n

with respect to the group Tn. The element characterized hereby will be
designated as C8. Then with two distinct cycles B and C of the order n only
containing the numbers m, m 1 1, . . . m 1 n 2 1, B8 and C8 are conjugated
to each other in the group Tn.

Next we consider the permutations P with the m cycles

C1 5 C1,n1 5 (1, 2, . . . n1),

C2 5 Cn111,n2 5 (n1 1 1, n1 1 2, . . . n1 1 n2), . . .

where n1 . n2 . . . . . nm $ 1 and there shall be even numbers among the
nm such that P is a permutation of second or third kind. Then we have

P 5 C1C2 ??? Cm

Correspondingly, I put

P8 5 C81C82 ??? C8m

In this equation, the order of the factors may not be changed arbitrarily any
more. It has to be mentioned, however, that those factors C8m with which the
nm are odd can be ordered freely. The element P8 stays unchanged if one
writes first the factors C8m with an odd nm and then the factors with even nm

such that their values decrease.
For any permutation Q whose m cycles have the same orders n1, n2, ???

nm as those of P, P and Q are similar permutations. Among the two elements
of Tn that belong to Q only one is (according to the Theorems IV and V)
conjugated to the element P8 with respect to Tn if P and Q are odd permuta-
tions, and, if P and Q are even, only one is conjugated with P8 with respect
to Bn. I designate the element that satisfies the first or the second condition
as Q8.

We have now made a particular convention for all the permutations P
of second or third kind determining which element of Tn shall be called P8.
We think of the designations for the permutations of the first kind as fixed.
Considering that for each of these permutations P the elements P8 and JP8
are conjugated with respect to Tn and, if P is even, also with respect to Bn ,
one sees that as a matter of our conventions the condition formulated earlier
is satisfied: if P and Q are two permutations being conjugated in Sn or An ,
then P8 and Q8 are conjugated elements of Tn or Bn.

Paragraph 12. We have to make a remark that is essential for the
following. It refers to the case that the permutations can be decomposed into
cycles of distinct orders.
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In particular, be Q a permutation with m cycles D1, D2, . . . Dm of the
orders n1 . n2 . ??? nm such that the cycle Dm only contains the numbers

n1 1 n2 1 ??? nm21 1 1, . . . n1 1 n2 1 ??? nm (23)

in an arbitrary order. We have already arranged which elements of Tn are to
be called Q8, D81, D82, . . . D8m. In any case,

Q8 5 JaD81D82 ??? D8m (24)

where a is 0 or 1. We will examine the conditions that determine whether
a 5 0 or a 5 1.

I call the symmetric group consisting of all the nm! permutations of the
indices (23) Hm and the subgroup of the order 2 ? nm! of Tn corresponding
to the subgroup Hm of Sn , Km. If Cm has the same meaning as before, then
Cm and Dm are similar permutations of Hm; also, according to our conventions,
C8m and D8m are conjugated elements of Km. Let Hm be a permutation of Hm

satisfying the condition

H21
m CmHm 5 Dm

Then,

H821
m C8mH8m 5 D8m

If nm is even, we choose Hm to be an even permutation, which is always
possible. If nm is odd, however, Hm is an even permutation if Cm and Dm are
conjugated with the indices (23) in the alternating group, but if Hm is odd,
this is not the case. Let the number of indices m such that Hm is odd be equal
to r and s be the number of the even numbers among the nm. If nm is even,
H8m always commutes with C8r and D8r if r 5 m, as Hm is even, according to
Theorem III. The same is valid with an odd nm associated to an even permuta-
tion Hm. However, if nm is odd and so is Hm, then H8m commutes with C8r and
D8r if r 5 m and nr are odd; though, if nr is even,

H821
m C8rH8m 5 JC8r, H821

m D8rH8m 5 JD8r

Putting

H 5 H1H2 ??? Hm

it follows that

H 8 5 JbH81H82 ??? H8m

where b is 0 or 1. One can see easily that, if P8 denotes the product
C81, C82 ??? C8m,
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H821P8H 8 5 J rsD81D82 ??? D8m 5 J rs2aQ8 (25)

I claim now that in equation (24), a equals 0 or 1, depending on whether
r is even or odd.

Let s be odd. Then, P and Q are odd permutations. Q8 denotes the
element of Tn conjugated to P8. Hence, it follows from (25) that

H821P8H8 5 Q8 5 J rD81D82 ??? D8m

i.e., a [ r (mod 2). Otherwise, if s is even, P and Q are even permutations
of the third kind. In this case Q8 shall be conjugated to P8 with respect to
the group Bn. If r is even, H is an even permutation, hence, H821P8H 8 5
Q8. Equation (25) tells us that a 5 0. If r is odd, H is an even permutation
and hence, H821P8H 8 5 JQ8.35 According to (25), a 5 1.

4. GENERAL PROPERTIES OF THE CHARACTERS OF THE
GROUPS Tn AND Bn

Paragraph 13. Considering an arbitrary representation of a finite group
H by homogeneous linear substitutions in f variables (matrices of fth degree)
and with x(R) being the trace of the substitution corresponding to the element
R of H, one designates the system of numbers x(R) as a character of fth
degree of the group H, according to Mr. Frobenius.36 If the representation is
irreducible, x(R) is called a simple character. Two representations are equiva-
lent exactly if they possess the same character. The number of simple charac-
ters x(0) (R), x(1) (R),. . . equals the number of classes of conjugated elements
of H and these characters satisfy the relations

o x(a)(R)x(a)(R21) 5 h, o x(a)(R)x(b)(R21) 5 0 (26)

where R stands for any element of H and h is the order of H.37

Moreover, one calls the system of numbers

z(R) 5 r0x(0)(R) 1 r1x(1)(R) 1 . . .

a composed character of H, where r0, r1, . . . are arbitrary integers. It follows
from (26) that

35 This follows from the fact that Q8 and JQ8 are conjugated within Tn , but not within Tn.
36 This immediately implies that X(R) 5 x(R8), where R and R8 are conjugated elements of H.
37 Easy proofs of these theorems which have been formulated, by Mr. Frobenius in a number

of works (Sitzungsber. K. Preuss. Akad. Berlin, 1896–1899) first can be found in two works
by Mr. W. Burnside (Acta Math. 28, 369, and Proc. Lond. Math. Soc. Ser. 2 (1904), 1, 117;
also see my work, Neue Begruendung der Theorie der Gruppencharaktere, Sitzungsber. K.
Preuss. Akad. Berlin (1905), p. 406.
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o z(R)z(R21) 5 h(r 2
0 1 r 2

1 1 . . .) (27)

z(R) is a simple character only if this sum equals h and z(E ) . 0. If none
of the numbers r0, r1, . . . is negative, there belongs a representation of H
by matrices of the order z(E ) to z(R); in this case, z(R) is also called an
actual character.

Next let H be one of the groups Tn or Bn and, correspondingly, let G
be either Sn or An. If the (actual) character of fth degree x(R) of H satisfies38

x(J ) 5 jx(E ), j 5 61

the matrices corresponding to the elements R and JR in the representation
of H belonging to x(R) differ only by a factor j, such that

x(JR) 5 jx(R) (28)

These two matrices determine only one fractional linear substitution and the
totality of these substitutions builds a group K isomorphic to the group G
which I will call the collineation group belonging to the character x(R). If
k denotes the order of K, K can be written as a group of k homogeneous
linear substitutions exactly if j 5 1 or n # 3 (compare to Paragraph 2).

A character x(R) of H satisfying equations (28) will be called a character
of the first or second kind depending on whether j 5 11 or j 5 21.

If x(R) is a simple character of the first kind of H, then the numbers

x(P) 5 x(P8) 5 x(JP8)

build a simple character of G. In this connection, P8 denotes the element of
Tn or Bn associated to the permutation P of Sn or An. Conversely, one obtains
from each character x(P) of G a simple character of the first kind x(R) of
H by putting the numbers x(P8) and x(JP8) equal to x(P). Therefore the
number of simple characters of the first kind of H equals the number of
simple characters of G, i.e., the number of classes of conjugated elements
within the group G. With the numbers kn , k8n, ln , l8n, vn , gn, and un having the
same meaning as in Paragraphs 8 and 10, we obtain the following result:

The number of simple characters of second kind in the group Tn equals

k8n 2 kn 5 gn 1 2un 5 nn 1 un

and in the group Bn

l8n 2 ln 5 2gn 1 un 5 nn 1 gn

As the characters of the groups Sn and An are already known (see

38 This condition is automatically satisfied in the case of a simple character



440 Schur

Introduction), the characters of the first kind of Tn and Bn can be neglected
and we only care about the characters of the second kind.

Paragraph 14. From every representation D of the group Tn by homoge-
neous linear substitutions (matrices) one can obtain a second representation
D8 by leaving the matrices of D corresponding to the elements of Bn unchanged
and changing the sign of the remaining ones. I call D and D8 associated
representations and the corresponding characters associated characters of
Tn. Two associated characters x(T ) and x8(T ) of Tn are marked by the fact that

x8(T ) 5 (2 1)tx(T )

where t is 0 or 1, depending on whether T is contained in Bn or not. Particularly,
if x(T ) 5 x8(T ), i.e., x(T ) 5 0 with all the elements T of Tn not contained
in Bn , I designate x(T ) as self-associated or as a two-sided character.

For a simple, not two-sided character x(T ) of Tn , it follows from (26) that

o x(T )x(T 21) 5 2n!, o (21)tx(T )x(T 21) 5 0 (29)

i.e.,

o x(B)x(B21) 5 n! (30)

Here, T stands for any element of Tn and B for any element of Bn. For a
simple two-sided character x(T ),

o x(B)x(B21) 5 2n! (31)

This implies that the numbers x(B) 5 f(B) of the first case represent
a simple character of the group Bn; in the second case,

x(B) 5 c(B) 1 c(B)

where c(B) and c(B) are distinct simple characters of Bn [compare to (27)].
It is easily seen that two associated characters of Tn are either both of the
first or both of the second kind. Also, the characters f(B), c(B), and c(B)
of Bn are of the first or second kind depending on whether the character x(T )
of Tn is a character of the first or second kind.

Among the gn 1 2un simple characters of second kind of Tn , there shall
be r two-sided ones and 2s not two-sided ones. As the latter appear as pairs,
s is an integer. Keeping in mind that to each pair of associated characters of
Tn there belongs only one simple character of Bn , but to each two-sided
character of Tn , two characters of Bn , one obtains 2r 1 s simple characters
of second kind of Bn in total. Using equations (26), one can see that these
2r 1 s characters are distinct; moreover, according to a theorem by Mr.
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Frobenius,39 these are all the simple characters of second kind of Bn. As the
number of these characters is 2gn 1 un , it follows that

2r 1 s 5 2gn 1 un

On the other hand,

r 1 2s 5 gn 1 2un

hence,

r 5 gn , s 5 un , r 1 s 5 gn 1 un 5 vn

The number of two-sided (simple) characters of second kind of Tn equals
the number of even decompositions of n in distinct summands.

Also, I state that the number of two-sided characters of first kind of Tn

equals the number of decompositions of n in distinct odd summands.40

Paragraph 15. If C is an arbitrary element of Tn not contained in Bn ,
e.g., the element T1 corresponding to the transposition S1 5 (1, 2), one obtains
an outer automorphism A of Bn by assigning to the element B of Bn the
element B 5 C21 BC. Any character u(B) of Bn thus yields a second character
u(B) such that

u(B) 5 u(B)

Two such characters are denoted as adjunct characters.41 One concludes
immediately that if u(B) is a simple character of first or second kind, u(B)
has the same property.

I will show now that the two characters c(B) and c(B) of Bn developed
from a two-sided (simple) character x(T) of Tn are adjunct.

Consider an (irreducible) representation D of Tn by matrices of the degree
f 5 x(E ) which belongs to x(T ). The matrix corresponding to the element
T will be called T, too. As the representation associated to D is equivalent
to D, one can name a matrix H with a nonvanishing determinant such that

H21TH 5 (21)tT (32)

where t has the same meaning as before. This yields that the matrix H 2

commutes with any matrix of D. As D is irreducible, H 2 5 aEf , where a is
a constant and Ea denotes the identity matrix of ath degree. We can assume
without reducing the validity that a 5 1 such that H 2 5 Ef . Hence, one can
choose a matrix M with a nonvanishing determinant such that

39 Ueber die Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen,
Sitzungsber. K. Preuss. Akad. Berlin (1898), 501.

40 Compare to Frobenius, Ueber die Charaktere der symmetrischen Gruppe, Paragraph 6, and
the dissertation of the author, Paragraph 23.

41 The character u(B) does not depend on the choice of the element C.
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M 21HM 5 1Ep 0
0 2Ep2

where p and q are positive integers with sum f. Substituting for the matrices
T the matrices M21TM, one obtains a representation equivalent to D where
the matrix M21HM plays the same role as H in D. Hence, we can assume that

1Ep 0
0 2Ep2

Equations (32) then yield that, if the elements of Tn contained in the subgroup
Bn are called B, the others C, the matrices B and C in our representation D
are of the form

B 5 1P 0
0 P2, C 5 10 Q

Q 02
where P and P are quadratic matrices of the degrees p and q, Q is a matrix
with p rows and q columns, and Q is a matrix with q rows and p columns.
If p 5 q, the determinants of C would vanish, which is not the case. Hence,
p 5 q and f 5 2p.

The matrices P and P obviously generate two representations of the
group Bn. However, as we know that x(B) appears as the sum of the two simple
characters c(B) and c (B) of Bn , these representations have to be irreducible.

We can assume that c(B) is the trace of the matrix P and c(B) the trace
of P.

Let C be an element of Tn to which there corresponds a transposition
in Sn , e.g., the transposition S1 5 (1, 2). Then, the element C 2 equals J, i.e.
the matrix C 2 equals jEf , where j 5 61. Hence, we obtain QQ 5 QQ 5
JE. It is easy to see that the representation D can be replaced by an equivalent
representation in which

C 5 1 0 Ep

jEp 0 2
and H stays unchanged. For C of this form, we obtain

C21BC 5 1P 0
0 P2

This implies, which is to be shown, that

c(C21BC ) 5 c(B), c(C21BC ) 5 c(B) (33)

Paragraph 16. I also put
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d(B) 5 c(B) 2 c(B)

and designate the system of n! numbers d(B) as the complement of the two-
sided character x(T ). As c and c commute, the complement d(B) is deter-
mined only up to a sign by the character x(T ). This sign has no meaning in
this context, as it suffices to know, apart from the numbers x(J ), either the
numbers c(B) or the numbers 2d(B) in order to be able to name the two
characters c(B) and c(B) of Bn.

The number d(B) is nothing but the trace of the matrix HB. Hence, if
one knows a representation D belonging to the character x(T ) and with H
being a matrix satisfying the equation H 2 5 Ef and also the conditions (32),
one only has to name the traces of the matrices HB in order to determine
the complement of the character x(T ).

If x(J ) 5 jf, then the numbers d(B) satisfy the equations

d(JB) 5 jd(B) (34)

and also, following from (27),

o
B

d(B)d(B21) 5 2n! (35)

For any element C of Tn which is not contained in Bn, it follows from (33) that

d(C21BC ) 5 2d(B) (36)

In particular, if B 5 C21BC and B are conjugated within Bn , then

d(B) 5 d(B) 5 0 (37)

Only if B and B can be called adjunct elements of Bn in the sense of Paragraph
10 can d(B) not be zero. Therefore, the complement d(B) has to be determined
only with such elements B of Bn to which correspond permutations of the
third kind in An.

Generally, let j(T ) be an arbitrary composed character of Tn being self-
associated, i.e., which satisfies j(T ) 5 0 if T is not contained in Bn. Then
there is an infinite number of different ways to put

j(T ) 5 rax(a)(T ) 1 rbx(b) 1 . . . 1 rrx(n)(T )

where

x(a)(T ), x(b)(T ), . . . (38)

are simple, not necessarily distinct characters of Tn and ra, rb, . . . rn are
integers. However, if j(T ) satisfies the condition

j(J ) 5 jj(E ), j 5 61

then also
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x(a)(J ) 5 jx(a)(E ), x(b)(J ) 5 jx(b)(E ), . . . x(n)(J ) 5 jx(n)(E )

If

x(a)(T ), x(b)(T ), . . . x(k)(T )

are all the two-sided ones among the characters (38) and if one knows
the complements

d(a)(B), d(b)(B), . . . d(k)(B)

then I designate as a complement of the two-sided character j(T) any system
of numbers

d(B) 5 earad(a)(B) 1 Pbrbd(b)(B) 1 ??? 1 ekrkd(k)(B)

where the ea, eb, . . . ek have the values 61.42

Hence there is an infinite number of complements assigned to each two-
sided character j(T ). In any case, the numbers d(B) satisfy the conditions
(36)–(37); moreover, one obtains two adjunct (composed) characters u(B)
and u(B) of Bn with their sum being j(B) by putting

u(B) 5 1–2 [j(B) 1 d(B)], u(B) 5 1–2 [j(B) 2 d(B)]

If, in particular, j(T ) 5 x(T ) is a simple character, u(B) and u(B) become
actual characters of Bn only if

d(B) 5 6[c(B) 5 c(B)]

where c(B) and c(B) have the same meaning as before. These two special
complements of x(T ) are considered, as mentioned above, as not essentially
distinct. Talking of the complement of a simple two-sided character, we mean
one of those two complements.

Paragraph 17. If x(T ) is an arbitrary character of second kind of Tn ,
then with each permutation P of Sn

x(JP8) 5 2x(P8)

where P8 is the element of Tn to be determined by the rules of Paragraph
11. Moreover, as, with each permutation being of the first kind, P8 and JP8
are conjugated elements of Tn and hence x(JP8) 5 x(P8), it follows for any
permutation of first kind that

x(JP8) 5 x(P8) 5 0

It is therefore sufficient to name only the numbers x(P8) for the permutations
of second kind if x(T ) is a character of second kind.

42 If there is no two-sided character among those of (38), I say that the complement of j(T ) is zero.
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As we have chosen the elements P8 such that to two conjugated permuta-
tions of Sn correspond also two conjugated elements of Tn , the number x(P8)
is only determined by the class of similar permutations of Sn which includes P.

Such a class is called even or odd depending on whether its permutations
are even or odd. [a] denotes a class whose permutations exclusively consist
of cycles of an odd order. If, among the cycles of a permutation p of [a],
a1 cycles are of the order 1, a3 cycles of the order 3, etc., I put

[a] 5 [a1, a3, . . .] and x(P8) 5 xa 5 xa1,a2,...

The class [a] contains

ha 5
n!

1a1a1! 3a3a3! . . .

permutations and this also is the number of elements of Tn conjugated with
P8. The number of classes [a] equals vn. Noting that P and P21 are similar
permutations and that the order of P is odd, one sees that P8 and P821 are
conjugated elements of Tn. In our case, therefore, x(P8) 5 x(P821) and all
the numbers xa are real.43 Especially, if x(T ) is a simple character of second
kind, (30) and (31) imply

o hax2
a 5

n!
2e (39)

where the sum goes over all vn classes [a] and e is 0 or 1 depending on
whether x(T ) is a two-sided character or not. It also follows from (26) that

o haxax8a 5 0 (40)

where x(T ) and x8(T ) are two distinct characters not associated to each other.
Apart from the classes [a] which contain all the even permutations of

second kind, we also have to consider those classes of Sn whose permutations
can be decomposed into cycles of distinct orders. I designate such a class a
(n), (r), . . . and put

(n) 5 (n1, n2, . . . nm) (41)

43 Generally, x(T ) and x(T21) are conjugate complex numbers for any character. It is also
easy to conclude that all the numbers xa are real; this, however, will be shown later in a
different manner.
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and

x(P8) 5 x(n) 5 x(n1,n2,...nm)

if a permutation P of (n) contains exactly m cycles of the order

n1, n2, . . . nm (n1 . n2 . ??? . vm . 1)

The number of classes (n) also equals vn , but those among them with
which the n1, n2, . . . nm are odd are also contained among the classes [a].
The numbers x(n) have to be named only for the un odd classes (n) because
the remaining ones either appear among the numbers xa or are zero by
themselves. If x(T ) is a two-sided character, x(n) also becomes zero with any
odd class (n). In this case, we will have to specify at least one complement
d(B) of x(T ). If P denotes the permutation

(1, 2, . . . n1)(n1 1 1, n1 1 2, . . . n1 1 n2) ???

of the class (41) and if P8 is the fixed element of Tn as mentioned above, I
put with (n) being an even class

d(P8) 5 d(n) 5 d(n1,n2,...nm)

Knowing the numbers d(n) for all the gn even classes (n), one can specify all
the other numbers d(B), too, according to equations (34)–(37). In our case,
we have to put j 5 21.

Defining the number n!/n1n2 . . . nm of permutations of the class (41) as
h(n), one obtains with a simple character of second kind which is not two-
sided the equation

o h(n)x(n)x(n) 5
n!
2

(42)

Similarly, with (35), the complement of a two-sided character becomes

o h(n)d(n)d(n) 5 n! (43)

In (42), the sum contains all the odd classes (n) and in (43) all the even ones.
Moreover, x(n) and d(n) are the numbers complex conjugated to x(n) and d(n).

I derive two other formulas which will be important in the following.
Generally, with each permutation P of Sn ,

o
x

x(P8)x(P821) 5
2n!
hP

where the sum includes all the simple characters of first and second kind of
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Tn and hP is the number of elements of Tn conjugated to P8.44 If P is a
permutation of second kind, then hP also denotes the number of permutations
of Sn similar to P. As the n! numbers x(P8) 5 x(P), with each character of
first kind, generate a character of Sn it follows that

o
x

8 x(P8)x(P821) 5
n!
hP

where the sum includes all the characters of the first kind. Hence,

o
x

9 x(P8)x(P821) 5
n!
hP

where x becomes any of the vn 1 un characters of the second kind. I will
call the vn simple characters of the second kind among which are no two
associated to each other

x(1)(T ), x(2)(T ), . . . x(vn)(T )

Furthermore, let er be equal to 0 or 1, depending on whether x(r)(T ) is
a two-sided character or not. The last equation can then be rewritten, if P is
contained in the class [a], as

o
r

2erx(r)2
a 5

n!
ha

(44)

However, if [a] and [b] are different classes, one obtains similarly

o
r

2erx(r)
a x(r)

b 5 0 (45)

5. ON THE COLLINEATION GROUPS BELONGING TO THE
CHARACTERS OF THE GROUPS Tn AND Bn

Paragraph 18. As in Paragraph 13, let H denote one of the groups Tn

or Bn and G be either Sn or An. If g is the order of G, the order h of H equals 2g.
Again, consider a simple character x(R) of H and a representation D of

H belonging to x(R) by matrices (R). For any permutation P of G, denote
the collineation determined by the matrices (P8) and (JP8) by P and the group
generated by this collineation by K.

It has to be mentioned first that if n $ 4 and x(R) is a character of
second kind, the g collineations P must be distinct. If this were not the case,
there would at least be one permutation P distinct from E such that P 5 E

44 This is one of the basic equations of the theory of group characters. Compare to my work,
Neue Begruendung der Theorie der Gruppencharaktere, Equation (XIV).
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and these permutations would build an invariant subgroup F of G. If n . 4,
it would follow that F 5 G or G 5 Sn , as An is a simple group and Sn

contains only this one invariant subgroup An. If n 5 4, the group of the
four elements

E, A 5 (1, 2)(3, 4), B 5 (1, 3)(2, 4), C 5 (1, 4)(2, 3)

would have to be considered for F. In any case, F contains the permutations
A and B. For the corresponding elements A8 and B8 of H, the matrices (A8)
and (B8) in our representation D would only differ by a constant factor and,
hence, commute. However, if T1, T2, . . . denote the elements generating the
group Tn ,

A8 5 JaT1T3, B8 5 JbT2T1T3T2

and this yields A8B8 5 JB8A8. According to our assumption about the character
x(R), in any case (J ) 5 2(E ), it follows that (A8)(B8) 5 2(B8)(A8), which
leads to a contradiction.

Therefore, the collineation group K belonging to a character of the
second kind of H is always isomorphic to the group G if n $ 4.

Similarly, it can be concluded that the group K is not isomorphic in the
first degree to the group S if the order f of a simple character of first kind
of H equals 1 or G 5 S4 and f 5 2.

Paragraph 19. Let x(R) denote a simple character of H different from
x(R) and corresponding to the representation D of H by the matrices (R).
The corresponding collineation group shall be called K; furthermore, {P}
shall be the substitution of K corresponding to the permutation P of S.

We will examine the conditions under which the groups K and K equal
each other, apart from the ordering.

We have to distinguish between two cases.
(a) Let {P} 5 {P} for each permutation P of G. Then, the coefficient

matrices of these two collineations differ only by a number and therefore,
with any element R of H,

(R) 5 zR ? (R)

which yields

x(R) 5 zR ? x(R) (46)

where the zR are certain numbers. The first equation implies with any two
elements R and S of H
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zRzS 5 zRS

i.e., the numbers zR build a linear character of H.45 If H 5 Tn , the commutator
of H is the subgroup Bn with index 2. Apart from the main character zR 5
1, which is of no interest, there is only one other linear character which can
be obtained by putting zR 5 1 or zR 5 21, depending on whether R is
contained in Bn or not. Equation (46) then shows us that x and x become
associated characters. Also, one concludes immediately that the collineation
groups belonging to two associated characters of Tn are to be considered as
not distinct.

Let H now be the group Bn. For n . 4, the commutator of Bn contains
all the elements of the goup and it follows that Bn has only the linear character
zR 5 1, which will be excluded again. However, if n 5 4, Bn possesses three
linear characters z0(R), z1(R), z2(R), which are determined by

za(T2T1) 5 ra, za(T3T1) 5 1

where r is a primitive cubic root of the identity. The group B4 is an exception
which has to be considered in the following.

(b) In this case, let the substitution {P} of K be equal to the substitution
{P1} of K, where P1 means a permutation of G which not necessarily equals
P. We obviously obtain an automorphism A of G by assigning the permutation
P1 to P. First, if A is an inner automorphism of G, there exists a permutation
H within G such that H21PH 5 P1. This, however, leads to case (a) if one
substitutes K by the group equivalent to it which is generated by the linear
transformation H.

Hence, A is an outer automorphism of G. If G 5 Sn , we only have to
consider the case where n 5 6, as Sn is a complete group with n 5 6. Hence,
G 5 An. If n 5 6, again A can only be an automorphism obtained by
transforming all the permutations of An by an odd permutation U. This yields
P1 5 U21PU; according to the assumption, the collineations {U21PU} and
{P} are the same. Designating the element U 8 belonging to U in Tn by C,
one discovers that the representations D and D of the group H 5 Bn are
connected such that with any element R of Bn ,

(C21RC ) 5 zR ? (R) (47)

where zR is a constant. These numbers zR build another linear character of
Bn. Neglecting the case where n 5 4, it follows that zR 5 1. Therefore,
equation (47) implies

45 Compare to Frobenius, Ueber die Primfaktoren der Gruppendeterminante, Sitzungber. K.
Preuss. Akad. Berlin (1896), p. 1343.
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x(C21RC ) 5 x(R)

i.e., x and x are adjunct characters of Bn (compare to Paragraph 15). Con-
versely, with x and x being adjunct characters of Bn , the group K becomes
equal to K or to a group equivalent to K if one permutes the elements of K
with the automorphism A of An. In this case I call K and K adjunct groups
(see Introduction).

In the previously excluded case n 5 6, either with S6 or A6, one has to
consider the well-known automorphism A which assigns a permutation of
the form (abg)(deh) to each cycle of the order three. Moreover, as we will
see later, in each of the groups T6 and B6, there exist certain pairs of characters
x and x whose collineation groups are transformed into each other by the
automorphism A.

Paragraph 20. If one wants to know only those irreducible collineation
groups which are isomorphic to the groups Sn or An and cannot be written
as groups of n! and n!/2, respectively, homogeneous linear substitutions, one
has to consider only the simple characters of second kind of Tn or Bn.
Furthermore, two associated characters within the group Tn and two adjunct
ones within Bn are not essentially distinct. With the results on the number
of characters of the second kind within the groups Tn and Bn obtained above,
we can state the theorem announced in the Introduction:

VI. For n . 3 and not 6, the number of essentially different irreducible
collineation groups isomorphic to Sn which cannot be written as groups of
n! homogeneous linear substitutions equals the number vn of decompositions
of n into distinct summands. If n . 4 and not 6 or 7, the corresponding
number with the group An also equals vn.

The group S6 is an exception as a matter of the outer automorphism
mentioned above. Here, as I emphasized in the Introduction, only three of
the vn 5 4 collineation groups are essentially different. For the group A4, the
v4 5 2 collineation groups reduce to only one group because of the appearing
of linear characters within the group B4. The cases n 5 6 and n 5 7 play
an important role only with the group An as the groups B6 and B7 are no
longer the representation groups of A6 and A7.

6. THE PRINCIPAL REPRESENTATION OF SECOND KIND OF
THE GROUP Tn

Paragraph 21. In this paragraph, I will set up and examine the collinea-
tion group of order 2[n21/2 isomorphic to Sn which I mentioned in the
Introduction.
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For

A 5 (axl), B 5 (bmn)

two matrices of ranks p and q, the matrix of rank pq

1
a11 B a12 B ??? a1p B
a21 B a22 B ??? a2p B
??? ??? ??? ???

ap1 B ap2 B ??? app B
2

will be called A 3 B. If C denotes a third matrix of rank r, then

(A 3 B) 3 C 5 A 3 (B 3 C )

This matrix of rank pqr is called A 3 B 3 C. Analogously, with m matrices
A1, A2, . . . Am of arbitrary ranks, we define the symbol

A1 3 A2 3 ??? 3 Am (48)

If the A1, A2, . . . Am are all equal to a matrix A, I will designate (48) as
Pm A. The trace of the matrix (48) equals the product of the traces of the
matrices A1, A2, . . . Am. Moreover, with m arbitrary matrices B1, B2, . . . Bm

and Bm being of the same rank as Am, we obtain46

(A1 3 A2 3 ??? 3 Am)(B1 3 B2 3 ??? 3 Bm) 5 A1 B1 3 A2 B2 3 ??? (49)

3 A1 B1

Consider next the four matrices with rank two:

F 5 11 0
0 12, A 5 10 1

1 02, B 5 1 0 1
21 02, C 5 11 0

0 212
These matrices satisfy the following conditions:

A2 5 F, B2 5 2F, C 2 5 F

AB 5 2BA 5 2C, BC5 2CB 5 2A, CA 5 2AC 5 B (50)

CBA 5 F

Next, form, for an arbitrary m, the matrices of rank 2m,

M1 5 Pm A, M2 5 Pm21 A 3 B, M3 5 Pm21 A 3 C, . . .

M2n 5 Pm2n A 3 B 3 Pn21 F, M2n11 5 Pm2n A 3 C 3 Pn21 F, . . .

46 Compare to A. Hurwitz, Zur Invariantentheorie, Math. Ann. 45, 381, and my dissertation,
Paragraph 6.
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M2m 5 B 3 Pm21 F, M2m11 5 C 3 Pm21 F

These 2m 1 1 matrices satisfy the equations, according to (49) and (50),

M 2
2n 5 2E, M 2

2n11 5 E (51)

MxMl 5 2MlMx (52)

M2m11 M2m ??? M2 M1 5 E, (53)

where E 5 Pm F denotes the identity matrix of rank 2m.
Equations (51) and (52) yield that any product of the 2m matrices M1,

M2, . . . M2m equals one of the

1 1 12m
1 2 1 12m

2 2 1 ??? 12m
2m2 5 22m

matrices

E, M1, M2, . . . M2m, M1 M2, M1 M3, . . . M2m21 M2m, . . . M1 M2 . . . M2m

(54)

neglecting the sign. Without great effort, one can also see that these matrices,
apart from the sign, are in accordance with the 4m matrices which are obtained
by substituting for the A1, A2, . . . Am in (48) the matrices F, A, B, and C in
any possible manner. As the traces of F, A, B, and C are all zero, it follows
that among the matrices (54)—I will call them X0, X1, X2, . . .—only the first
one has a nonzero trace; the trace of X0 5 E, however, equals 2m. Moreover,
the matrices X0, X1, X2, . . . are reproduced, apart from the sign, by multiplica-
tion, namely,

X 2
x 5 6E, XxXl 5 6Xm

where m is not zero.
This implies that the X0, X1, X2, . . . are linearly independent, i.e., if

a0 X0 1 a1 X1 1 a2 X2 1 . . . 5 0

multiplication with Xx yields

a0 X0 Xx 1 ??? 1 ax21 Xx21 Xx 6 axE 1 ax11 Xx11 Xx 1 ??? 5 0

As the trace of the matrix on the left-hand side equals 62max, it follows that
ax 5 0. Considering also that the number of matrices X0, X1, X2, . . . equals
the square of their rank, one discovers that any matrix of the rank 2m can be
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represented as a linear homogeneous combination of the X0, X1, X2, . . . .
Hence, the matrices M1, M2, . . . M2m generate an irreducible group.47

Paragraph 22. With the help of the matrices M1, M2, . . . M2m11, we
can now make up a representation of second kind of the group Tn.

Under the assumption that m 5 [n 2 1/2], i.e., n 5 2m 1 1 or n 5
2m 1 2, I put

Tl 5 al21 Ml21 1 blMl (l 5 1, 2, . . . n 2 1) (55)

where

a2n 5 2
!n

!2n 1 1
, b2n11 5

i !n 1 1

!2n 1 1

a2n11 5 2
i!2n 1 1

2!2n 1 1
, b2n12 5

!2n 1 3

2!n 1 1
(n 5 0, 1, 2, . . .)

Here all the roots are to be taken positive. Therefore,

T1 5 iM1, T2 5 2
i
2

M1 1
!3
2

M2, T3 5 2
1

!3
M2 1

i!2

!3
M, . . . .

The values al and bl satisfy the equations

b2
l 2 a2

l21 5 (21)l, albl 5
(21)l21

2

Using these equations and the formulas (51) and (52), the relations

T 2
a 5 2E, TbTb11 1 Tb 1 1Tb 5 E, (56)

TgTd 5 2TdTg, 3
a 5 1, 2, . . . n 2 1
b 5 1, 2, . . . n 2 2
g 5 1, 2, . . . n 2 3
d $ g 1 2

4
follow easily and this implies

(TbTb11)3 5 2E

Putting J 5 2E, one sees that the matrices J, T1, T2, . . . Tn21 satisfy the
relations (II) which define the group Tn. Therefore they generate a representa-
tion of Tn by matrices of rank 2[n21/2], and as J 5 2E, this is a representation
of second the kind. I denote this representation as Dn and call it the main
representation of the second kind of the group Tn.

47 This group is a finite group of the order 22m11.
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The fact that the representation Dn is irreducible can be seen in this
way: As T1 5 iM1, any one of the matrices M1, M2, . . . M2m can be represented
as a linear homogeneous combination of T1, T2, . . . Tn21. If the group generated
by the Ta was reducible, the group generated by the Ma would also be
reducible. However, as we have seen, this is not the case.

Equations (56) give rise to the following consideration. Only using these
equations, one can represent any product TaTbTg ??? as a linear homogeneous
combination of the 2n21 special products

E, T1, . . . Tn21, T1T2, T1T3, . . . Tn22Tn21, T1T2T3, . . . T1T2 . . . Tn21

(57)

where the coefficients can only be integers. Moreover, there cannot be derived
a linear homogeneous relation with constant coefficients between the products
(57) from equations (56). Actually, these equations can be satisfied by the
matrices (55). Among the linear combinations of the products of these matrices
are, as we have already seen, the Ma and therefore also the 22m linearly
independent matrices (54). For odd n, 22m 5 2n21 and the 2n21 products (57)
cannot be linearly dependent in this case. For even n, however, add another
Tn to the T1, T2, . . . Tn21 and add to equations (56) the equations

T 2
n 5 2E, Tn21Tn 1 TnTn21 5 E, (58)

TbTn 5 2TnTb (b 5 1, 2, . . . n 2 2)

As n 1 1 is odd, equations (56) and (58) do not imply a linear homogeneous
relation between the 2n products

E, T1, . . . Tn21, T1T2, T1T3, . . . Tn22Tn21, T1T2T3, . . . T1T2, . . . Tn21

and therefore no relation between the products (57) can be derived.
Denoting the products (57) as

A1, A2, . . . A2n21

we find that (56) yields equations of the kind

AxTa 5 o
2n21

l51
t (a)

xlAl

where the t (a)
xl denote certain integers. The matrices

Ta 5 (t (a)
xl )

of rank 2n21 obviously generate a group isomorphic (in the first degree) with
the group Tn:
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The group Tn can be represented as a linear homogeneous group of
rank 2n21 with integer coefficients.

Paragraph 23. In the following, I will calculate the (simple) character
x(T ) belonging to the representation Dn , which I call the main character of
second kind.

I start with this statement: Let X be a matrix of the form xE 1 ( xaPa,
where the Pa are products of k certain matrices of the set M1, M2, . . . , M2m.
Similarly, let Y 5 yE 1 ( ybQb, where the Qb denote products of all other
matrices of this set. Here none of the products Pa and Qb may equal 6E.
Then all the products PaQb are distinct from 6E. Therefore, according to
Paragraph 21, the traces of all the matrices Pa, Qb, PaQb equal zero. As the
trace of the identity matrix E of rank 2m equals 2m, it follows that the traces
of the matrices X, Y, XY take the values 2mx, 2my, 2mxy.

Next, let P be a permutation (of second kind), consisting of s cycles,
of the form

(1, 2, . . . l1)(l1 1 1, l1 1 2, . . . l1 1 l2) . . . (59)

where we assume that l1 $ l2 $ ??? . To this permutation of Sn there
corresponds in Tn the element

P8 5 Cl1Cl2 . . .

where

Cl1 5 Tl121Tl222 ??? T1, Cl2 5 Tl11l221Tl11l222 ??? Tl111, . . .

and, if la 5 1, Cla denotes the identity E of Tn. The matrices of Dn correspond-
ing to the elements P8 and Cla of Tn shall be designated with the same letters.
For odd n, i.e., n 5 2m 1 1, M2m11 appears in none of the matrices in (55)
and can be neglected if the Cla are expressed in terms of the Mx. However,
if n 5 2m 1 2, M2m11 appears only in Tn21 and has to be considered only
if P denotes the cycle (1, 2, . . . n), i.e.,

P8 5 Tn21Tn22 ??? T1

Moreover, Cl1 can be expressed by the products of the matrices

M1, M2, . . . Ml221

and similarly, Cl2 by the products of the matrices

Ml1, Ml111, . . . Ml11l221

and so on. In light of the statement made before, one can see that if the trace
of Cla equals 2mca, the trace of P8 takes the value 2mc1c2 ???.
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We therefore only have to calculate the trace of one element of the kind

C 5 TbTb21 ??? Tb2a

It follows that

C 5 (ab21 Mb21 1 bbMb)(ab22 Mb22 1 bb21 Mb21)

3 ??? (ab2a21 Mb2a21 1 bb2aMb2a)

Since we are only interested in the trace of C, doing the multiplication, one
has to consider solely those factors which have the form cE. For an even
number a 1 1 of factors Tl of C, the required form has only this one part

ab21bb21 M 2
b21 ? ab23bb23 M 2

b23 ??? ab2abb2aM 2
b2a

As

M 2
l 5 (21)l21E, albl 5

(21)l21

2

the trace of C equals 2m2(a11)/2. However, if a 1 1 is odd, the trace of C
equals zero with the only exception if n 5 2m 1 2 and

C 5 Tn21Tn21 ??? T1

5 (a2m M2m 1 b2m11 M2m11)(a2m21 M2m21 1 b2m M2m)

3 ??? (a1 M1 1 b2 M2) ? b1 M1

In this case, the expansion of C contains the factor

b2m11 M2m11 ? b2m M2m ??? b2 M2 ? b1 M1

which, according to (53), equals

b1b2 ??? b2m11 ? E

This factor has the value

i ?
!3
2

?
i!2

!3
?
!5

2!2
???

!2m11

2!m
?

i!m11

!2m11
5

im11!m11
2m

Hence, the trace of C equals

im11!m 1 1 5 !(21)n/2n/2

If all the orders l1, l2, . . . lr of the cycles of the permutation P examined
earlier are odd, the trace 2mca of Cla becomes 2m2(la21)/2, and therefore the
trace x(P8) of the matrix P equals
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2m2(l121)/22l22122???2lr212 5 2(2m2n1r)/2 5 2[r21/2]

On the other hand, if only one of the la is even, x(P8) becomes zero except
that n is even and P 5 (1, 2, . . . n). In this case,

x(P8) 5 !(21)n/2n/2

Using the notation introduced in Paragraph 17, one obtains:

VII. For [a] a class of similar permutations of Sn which can be decom-
posed into sa cycles of odd order, we have for the main character of the
second kind of Tn , x(T ),

xa 5 2[sa21/2]

If n is odd, x(T ) is a two-sided character. However, if n is even, x(T ) is not
a two-sided character and we obtain for the class (n) of cycles of nth order

x(n) 5 !(21)n/2n/2

For any other class (n), however,

x(n) 5 0

Paragraph 24. If n is odd, we also have to determine the simple characters
c(B) and c(B) of Bn belonging to x(T ), as x(T ) then is a two-sided character.
According to the above, it is sufficient to determine the complement d(B) 5
c(B) 2 c(B) of x(T ).

In order to solve this problem, one has to keep in mind that, if n 5
2m 1 1, the the matrix M2m11 does not contain the elements T1, T2, . . . Tn21

of our representation Dn. As

M2m11 Ml 5 2MlM2m11

it follows that

M 21
2m11TlM2m11 5 2Tl

Furthermore, M 2
2m11 5 E and this implies that M2m11 plays the same role in

our representation Dn as the matrix H in the two-sided representation of
Paragraph 16. In order to determine d(B), one therefore has to calculate the
trace of the matrix M2m11 P8 only for the even P. Again, we can restrict
ourselves to permutations P of the form (59).

As, according to equations (51)–(53),

M2m11 5 6M1M2 ??? M2m

the trace of a product
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M2m11 MaMb ???

is always zero, with a, b, . . . being any indices of the series 1, 2, . . . 2m
whose number is smaller than 2m. This implies immediately that the trace
of M2m11P8 equals zero if P is not (1, 2, . . . n). Again, in this case, however,

P8 5 Tn21Tn22 ??? T1

5 (a2m21 M2m21 1 b2m M2m)(a2m22 M2m22 1 b2m21 M2m21)

3 ??? (a1M1 1 b2 M2) ? b1 M1

and the trace d(P8) of M2m11P8 equals the trace of

M2m11 ? b2m M2m ? b2m21 M2m21 ??? b2 M2 ? b1 M1 5 b1b2 ??? b2mE

i.e.,

2mb1b2 ??? b2m 5 im!2m 1 1 5 !(21)(n21)/2n


